Getting Started With

APIs from RPG

Presented by
Scott Klement

http://www.scottklement.com

© 2006-2016, Scott Klement

A programmer's wife tells him: "Run to the storel gick up a
loaf of bread; If they have eggs, get a dozerhé programmer
comes home with 12 loaves of bread.

What's an API?

API = Application Programming Interface
- An Interface

APIs represent a way for one application to interface with another one. For
example, Order Entry software might need to interface with Shipping software to
determine a shipping charge.

- Program or Procedure Calls

Usually APls are implemented as programs or subprocedures that you call and
pass parameters to.

- Program to Program (or Procedure to Procedure)

APIls are designed to be used by programs. They're not (usually) intended to
be called from the command line, menu, etc. Instead, they're called from a
program. They don't take their input from a keyboard, but instead from a
parameter. They write their output to a parameter, and not to a screen or
paper. They are programs intended to be called by programs.

- Who writes APIS?

Anyone can write an API. In fact, you've probably already written some.

The IBM 1 APIs

IBM provides over 3200 different programs and
procedures that you can call to interface with the
various functions of the operating system!

This presentation focuses on how to
get started using the IBM i APIs from
an RPG IV (ILE RPG) program.

We'll start by examining how IBM’s documentation is
laid out, and discuss how to find the API you're
looking for, as well as which parameters it needs.

Methods for Finding APIs

There are two different scenarios where you mightb e
looking for information about APIs:

- When you know the name of the API, but you don’'t know what it
does (usually when you're trying to understand someone else’s
code)

- When you know what you want to do, but you don’t know which API
does the job.

IBM provides 3 ways of finding APIs:

- APIs by Category (When you don't know the APl name.)

- API finder (When you do know the API name or title.)

- Alphabetical Listing of APIs (I've never found a use for this.)

http://www-01.ibm.com/support/knowledgecenter/ssw i bm_i/welcome

% 1BM Knowledge Center - |

-

C [0 www-0Llibm.com/support/knowledgecenter/ssw_ibm_i_72/apiref/api.ntm o=

IBM Knowledge Center Sign In English

Saye Saarch

Search Fillers: 1BM17.2 X ¥ Auto-select ~ Application programming interfaces
= APIs overview
[Table of Contents What's new for IBM 7.2
- Application programming interfaces PDF file for APIs
APls overview
What's niew for IBM i 7.2 API finder
PDF file for APls
AP finder » APIs by category
v APis by category
Alphabetic list of APl A_lphabetlc I|St Of APIS
v AP concepts
s lisioa ABla » API concepts
' My Collections
A Licima ADIl~

T T O O O TNy Sy STerTT:

©1 Search Results

For example...

Let’s say you're reading a program, and you see cod e like the
following:

CHGVAR VAR(%BIN(&RCVVARLEN)) VALUE(1000)

CALL PGM(QDCRDEVD) PARM(&RCVVAR +
&RCVVARLEN +
'DEVDO0600' +
&DEV +
&ERRCODE)

CHGVAR VAR(&ADDR) VALUE(%SST(&RCVVAR 878 15))

In this case, you may not be sure what QDCRDEVD does, but you know it's
name. In that case, you want to be able to type the name and get
information about the API.

To do that, you'll use the API Finder. 6

API Finder (1 of 2)

IBM Knowledge Center Sign In English ~

Save Search =

#

Search Filters: IBMi7.2 % ' Auto-select Clear All | Add Products...

Share - Save to Collection = i

Find by name

Find by API descriptive name, by API name, or by part of the
name.

Example: Enter QEZCHBKS, or Change backup
schedule, or QEZ.
‘ |QDCRDEVD || Go |

Show results containing
’7 ® All words Any words

he “Google” for

The API finder is for searching for an API. It's t
7

IBM i API information.

API Finder (2 of 2)

IBM Knowledge Center Sign In English -

Save Search =

,

Search Filters: IBMi7.2 % ' Auto-select Clear All Add Products...

Share = Save to Collection = i

API finder

%nscrggg\?ofound for Back to API finder

Retrieve Device Description (QDCRDEVD)

Found it...

Now What?

Either the API finder has found a link to the API you were looking for, or
you've found it by browsing the categories.

The next step is to click that link and read the documentation for the API

itself.

This information is divided into sections that will

upcoming slides:

- Parameter Summary Area

- API Description, Locks & Authority Info

- Detailed Information about parameters

- Error Information

be explained in

APl Parameter Summary

At the top of each API's page

Send Program Message (QMHSNDPM) API

&

How the API
. _ uses the

Eequired Parameters Group: parm:

1 Message identifier Input

2 Qualfied message file name Tnput

3 Message data or immediate text Tnput

4 Length of message data or unmediate text Input

5 Message type Input

6 Call stack entry Input

7 Call stack counter Input

8 Message key Cutput

3 Errorcode o
Optional Parameter Group 1:

10 Length of call stack entry Input

11 Call stack entry qualification Input

12 Display program messages screen wait time Input
Optional Parameter Group 2:

13 Call stack entry data type Input

14 Coded character set identifier Tnput

Data type of

the parm:

Char(7)

Char{20}

Char(™*)

Binary(4)
Char{10}

Char(™*) or Fointer
Binary(4)

Char(4}

Char{*)

Binary(4)
Char(20)
EBinary(4)

Char(10)
Bmary(4)

QMHSNDPM is the name
of the program to call.

>

These

Parameters are

These aren’t required,
but if you pass one,
you have to pass
them all.

Same here,PLUS in
order to pass group 2,
you must also pass
group 1.

QMHSNDPM Example (1 of 2)

D QMHSNDPM PR EXTPGM('QMHSN DPM")
D MsglD 7A const
D MsgFile 20A const
D MsgData 32767A const options (*varsize)
D MsgDtalLen 101 O const
D MsgType 10A const < Use CONSTor “Input”
D StackEntry 10A const parameters.
D StackCount 101 0 const -—
D MsgKey 4A S :
D ErrorCode 32767A options(*vars ize) %lllgfng(“)in ';ngﬁ}/_s
D ErrorCode
D ByteSPI’OV 1010 |nZ(O) More about data
D Msg S 200A
D MsgKey 4A
Ifree
Msg = ‘This is a test. Don"t read this.’;
QMHSNDPM('CPF9897": 'QCPEMSG *LIBL': Msg:
: Yolen(Ytrimr(Msg))
: *DIAG': *': 0: MsgKey: ErrorCode);
*INLR = *ON; 11
lend-free

QMHSNDPM Example (2 of 2)

Display All Hessages

Bottom
Press Enter to continue.
F3=Exit

F5=Refresh F12=Cancel

F17=Top

F18=Bottom

12

Data Types

The data types that are listed for each API are usually pretty self explanatory.

Examples:

- CHAR(20) = character field, 20 long (20A in RPG)

- PACKED(15,5) = packed, 15 digits w/5 decimal places (15P 5 in RPG)
- POINTER(SPP) = Pointer. (Data type * in RPG — more info later!)

However, there are two data types that seem to caus e a lot of confusion:
- BINARY(4) = 4 byte binary integer. (1010 in RPG)
- BINARY(4), UNSIGNED = 4 byte unsigned binary integer (10U 0 in RPG)

- CHAR(*) = Character field with a special length, not VARYING (Declare this
as a long character field with options(*VARSIZE) on the prototype.)

NOTE: In RPG, we declare our numeric fields by the number of digits we can store in them. So a “9P.
0” field is 5 bytes long, but stores a 9 digit number. A “101 0" field is a binary integer that's 4 bytes
long,:but:stores:-a:10 digit:number.:: NEVER USE THE “B” DATA TYPE TS NOT-ATRUE BINARY
INTEGER. THE | AND UDATA TYPES ARE, AND THEY RUN MUCH EASTER, TOO.

API Description

On the API's page, after the Parameter Summary.

(This is the bottom of the box
around the parm summary)

|

The Send Program Message (QWMHSHDPLD APT sends a message to a call message \
queue or the external message queue. (The external message queue is the part of the

job message queue that handles messages between an interactive job and the work

station user. It is not associated with a specific call stack entry.) This APT allows the

current call stack entry to send a message to itz caller, a previous caller, or itself

Description of
what the API

In a multithreaded job, messages can be sent only to call message queues in the thread
iy which this APT 1z called or to the external message queue. Messages cannot be sent
to call message queues in other threads.

To zend a message to a nonprogram message queue, see Send MNonprogram hessage

(QOMHESNDLD APT
Before coding vour call to the QWEHSWDPLL AT, see Dependencies among)
Parameters.

Authorities and Locks

Message File Authority nfo abOl'Jt what SOI"t of
*TSE authority users will

Message File Library Authority heed for thev program
*EXECUTE to call this API.

14

Detailed Parameter Descriptions

On the API's page, after the Authorities and Locks

Required Parameter Group

Message identifier

INPUT, CHAR(T)

The identifiing code for the predefined message being sent, or blanks for an
immediate message.

TWhen sending an escape, notify, or status message, you must specify a message
identifier. When sending a request message, you must use blanks. When sending
other types of messages, you can use either a message identifier or blanks.

I you specifiy a message identifier, vou must specify a qualified message file
name. Ifyou do not specify a message identifier, the APT ignores the qualified
message file name parameter.

Qualified message file name

INPUT, CHAR(20)

For a predefined message, the name of the message file and the bhrary in which
it resides. The first 10 characters specify the file name, and the second 10
characters specify the ibrary. Tou can use these special values for the library

'\

Hame:

FHOURLIE The job's current library
*LIBT,

The library list

There are
detailed
descriptions of
all of the APIs
parameters.

This is what
usually takes up
most of the
space on each
APl's page.

15

Errors the API can Return

At the end of each API's manual page

Error Messages

Message ID Error Message Text

CPF24C5E
CPF24C6 E
CPF24CEE
CPF24CS E
CPF24CEE
CPF24CCE
CPF24CDE
CPF24CEE
CPF24ACE
CPF24ADE
CPF24A3E
CPF24BF E
CPF24EZ E
CPF24E4 E
CPF24E& E
CPF24E7 E

'\

Pomter to call stack entry not vald.

Value of To call stack entry data type paramneter not valid.
Control boundary not found on call stack.

Program boundary not found on call stack.

FPGENITAWE requires a specified program name.

Call stack entry &2 for *PGIMITAME not found.

Module name cannot be spectfied when *PGMEBDY 15 used.
Cualifier &1 mcorrect for use with pointer,

Either message identifier or message text must be specified.
Messages to remove must be *ALL f program message queue 15 *ALLIMNACT.
WValue for call stack counter parameter not valid.

Module or bound-program name is blank.

Meszage type &1 not valid

Sewere error while addressing parameter list.

Length of &1, not valid for message text or data.
Walue &1 for call stack entry name length not walid.

_/

ometimes there
are additional
tes about why
n error might be
caused.

16

APl Error Handling (1/2)

Offset
Dec Hex Use Type Field
0 0 |Input Binary(4) Bytes Provided
4 4 | Output Binary(4) Bytes Available
8 8 | Output Char(7) Exception ID
15 F | Output Char(1) Reserved
16 10 | Output Char(*) Exception Data

This structure is passed in a parameter to the API.

Bytes Provided should tell the API how big the DS is. (That way, you can control the

size of the Exception Data field!) You must set this before calling the API. Don't

leave it blank! (x'40404040" = 1,077,952,576)

- Bytes Available tells you how much error data the API sent back.
- You can leave off the fields on the end, as long as Bytes Provided is correct.
- You can set Bytes Provided to zero if you'd like the API to send you an *ESCAPE

message when it fails.

for error handling that | do not cover here. They a
Knowledge Center, however.

NOTE: The CEE APIs, and the Unix-type APIs have sep arate mechanisms
re documented in the

17

APl Error Handling (2/2)

If you assume the API will always succeed do this. Then, if something weird does
happen, the program will halt and there’ll be good diagnostic info in the job log.

D ErrorCode ds
D BytesProv 101 0 inz(0)
D BytesAvail 1010

/_

Sends an *ESCAPE

Imessage. Program will

crash if you don’t
monitor for it.

If you want to handle errors in your code, use this syntax instead. Nothing will go to the

job log, it's up to you to handle errors:

D ErrorCode ds

D BytesProv 101 0 inz(%size(ErrorCode))
D BytesAvalil 101 0 inz(0)

D Msgld TA

D 1A

D

MsgData 1024A

if (BytesAvail >0);

/I show ErrMsg to user!
endif;

CALLP QOMHSNDPM(. :other parms here... - i ErrorCode);

ErrMsg = Msgld + ‘ occurred called QMHSNDPM APIY’;

The use of %SIZE is a
good idea. Let the
compiler do the work,
and help you when
you need to make
changes:

This way, if BytesAvail
isn't zero: after calling
the API, you know

there’s an error.

Complex Parameters (Formats)

A format is a code that identifies the format of a data structure. (It's similar in concept
to a record format.)

A format name typically looks something like this:

DEVDO0600

When an API can return different types of data, or can return it in many different
formats (or would like to be able to do that at some point in the future!) it requests a
format.

Let’s say you're writing an interactive program, and you want to know the IP address of
your user’s PC.

To find this out, you'll need to retrieve information about the Display Device that he’s
using. This is done with the “Retrieve Device Description (QDCRDEVD)” API.

This API returns all sorts of information about a device. There are hundreds of fields
that it can return!

It returns different information, depending on what sort of device you'd like information
about. Atape device (*TAP) has very different information than a display device

(*DSP)! 19

Formats in the Manual (1/3)

Retrieve Device Description (QDCRDEVD) API

The first two parms tell the
API which data structure to
return info into.

Required Parameter Group:

1 Receiver variable Output Char(*) The format name tells the API
2 Length of receiver variable Input Binary(4) / what the data structure looks
3 Format name Input Char(8) *7 like.

4 Device name Input Char(10) |

5

Error Code r'o Char(*) \ ThAeF:ldv(\e/\fllii((::ﬁ 32:25; t;/a(illf’ rt2 -

interested in.

Default Public Authority: *USE

Threadsafe: Yes

The Retrieve Device Description (QDCRDEVD) API retrieves information about a | [BUL, what do you put
device description. or the format name?

20

Formats in the Manual (2/3)

To find the
possible format
names, scroll
down to the
detailed
information for
the required
parameter group.
This is what
you'll find:

‘ DEVDOS00 Detailed information for device category *DSP _

Format name
INPUT; CHAR(S)

The content and format of the information returned for each device description. The
posgible format names are:

DEVDOICO0 Basic device information.

DEVDO200 Detailed information for device category *TAPPC

DEVDO300 Detailed information for device category *ASC

DEVDO400 Detailed information for device category *BSC

DEVDOSO0 Detailed information for device category *DKT

DEVDO700 Detailed information for device category *FNC
DEVDOS00 Detailed information for device category *HOST
DEVDOY00 Detailed information for device category *INTR
DEVDIO00 Detailed information for device category *NET

DEVDII00 Detailed information for device category *PRT

Formats in the Manual (3/3)

To learn how
your data
structure must
be formatted,
scroll down to
|the detail info for

DEVDO0600

(part of it is
shown on the
right.)

‘ 877 | 36D ‘CHAR{IS) Tntemet Protocol (IP) internet address in o

DEVD0600 Format

Tlus format refurns detailed information about a device of category *DSP.

Offset
| Dec | Hex Type Field
0 0 Returns everything from format

DEVD0100

| 104 | 68 BINARY(4) Character identifier: graphic character set
_- 108 6C iBINARYH) (Character identifier: code page

[112][70 BINARY(4) Maximum length of request unit

| 116 74 BINARY(4) Imactivity timer

T T O reewerTeeT

_- 844 34cC iBINARYH) ‘Shared session number

[848 | 350 |CHAR(10) 'Dependeul location name
| 858 || 35A |C1H_AR{1} Network protocol

| 850 35B |CHAR(18) Network protocol address

dotted decimal form

— Py | p———————y am oae o

Formats & Data Structures

D QDCRDEVD PR ExtPgm('QDCRD EVD')
D Rcwar 32767A options(*vars ize)
D RcwVarlLen 101 0 const
D Format 8A const
D Device 10A const
D ErrorCode 32767A options(*vars ize)
D ErrorCode ds
D BytesProv 101 0 inz(%osize(Err orCode))
D BytesAvail 101 0 inz(0)
D Msgld TA
D 1A
D MsgDta 1024A
D MyData ds
D IP_Address 15A overlay(MyDat a:878)
[free
QDCRDEVD(MyData : %size(MyData) : 'DEVD0600" ;
: Device : ErrorCode); NOt?: Th.e start
position Is one
if (BytesAvail > 0); higher than the
endif;
manual.

Formats w/Variable Offsets

When the API docs tell you the position of the fields that it returns, it refers to that
position as an offset.

OFFSET = Distance (in bytes) between the start of the data, and the point where the
field starts.

In other words, it's a count of bytes from the start.
The first field is always at offset 0 because it's at the start.

Sometimes, the offset of data that it returns won'’t be at a fixed position. Instead, it'll
pass you a variable that contains the offset of the field!

This is common when:
- Preceding data was variable-length.

- Alist of repeating fields is returned. (such as a list of jobs on the system, list of
objects in a library, etc.)

The best way to deal with variable offsets is with pointer logic.
Never, ever hard-code an offset when an API passes it to you in a parameter!
24

API| Docs w/Var Offsets (1/2)

This is from format b |l B JSHA) |[Keserved
JOBIO750 of the 64 40 [BINARY(4) Offset to libraries i system brary list
Retrieve Job 68 44 BINARTY(4) Mumber of libraries in systemn library list
Information 72 48 |[BINMARY(4) ||Offsetto product libraries
(QUSRJOBI) APL. 76 | 4C [BIMARTWE) [Mumber of product ibraries
It's for retrieving 20 20 |BIMARY4) Offset to current library
the |ibrary list for a 34 54 | BIMARY) Mumber of current libraries
given job. 28 58 |BIMARY(4) |Offset to libraries in user library list

92 5C |[BINMARTY) Mumber of ibraries in user ibrary list
96 a0 [BIJARY Length of one ibrary array entry
See See ||Array(®) of System lbrary list (See Library array entrv for

note note |CHAR(™) format of ibrary array entrv.)

See See ||Array(®) of Product libraries (See Library array entry for

fuote note | |[CHAERT format of ibrary array entry.)

See See ||Array(®) of Current ibrary (See Libraty arrav entry for format
note note |CHAR(®) of library array entry.)

See See ||Array(®) of ser library list (See Library array entry for format
fuote note | |[CHAERT of ibrary array entry.)

Note: The decimal and hexzadecimal offsets depend on the number of libraries you
have in the various parts of vour library hsts. The data is left-justified with a blank pad
at the end. The array is sequential It 15 an array or data structure. See CL
Programming® bool for the total nurber of ibraries that can be returned. 25

API| Docs w/Var Offsets (2/2)

Each Library at the Offset

variable offsets .
follows the format Dec | Hex [Type Biel

of a “Library Array The fields CHAR(10) [Library name
Entry”. Here's that 1‘e1)vi=,a]tﬂfor CHAR(50) [Library text description
format: Cactl MY BINARY(4) [Library ASP number
object

retumed in |CHAR(10) [Library ASP name
the array. CHAR(*) Reserved

Note that the length of that array entry is alsova riable.

The offset from the previous slide tells us where t he first library is.
The second library will be immediately after the fi rst.

The Length of One Library Array Entry field tells us where the
second one starts. (As well as the third, and four th, and so on.)

26

Introduction to Pointers

The best way to handle variable offsets is with pointer logic.

POINTER = A variable that stores an address in the system’s main storage (or,
“memory”).

Just as a packed (or zoned) field is a variable designed to hold a decimal number, and
a date field is designed to hold a date, and a time field is designed to hold a time, a
pointer field is designed to hold an address in your system’s memory.

What can you do with pointer fields?

- Set them to *NULL (“this pointer doesn't currently have an address in it.”)

- Store the address of another variable in them.

- Ask the system to reserve (or “allocate”) memory, then store the address of that
memory in them.

- Add an offset to them (calculate the address X number of bytes later in memory)

- Subtract one pointer from another to calculate the offset between them.

- Base a variable on them

Based Variables

- Memory isn’'t automatically reserved to store their values.

- Instead, you control the place in memory where they reside.

- You can change it on the fly by changing the pointer. 27

Trivial Pointer Examples
= D FIELD1

S 10A
D p_Field2 S * inz(*NULL)
D FIELD2 S 1A Based(p Field 2)
D FIELD3 s 7P 01inz(1234567)
Ifree

Field1 = ‘Mashville’;

p._Field2 = %addr(Field1);
Field2 = ‘N

Field1 now:contains "Nashville”
p_Field2 = Y%addr(Fieldl) + 5;
Eield2 now contains *i”
Fieldl = ‘Strawbeary’;
Field2 now contains b’

p_Field2 = p_Field2 + 2;

Field2 = 'r’;
p_Field2 = %addr(Field3) + (%size(Field3) — 1);
Field2 = xX'0D’;

Fieldl now contains “Strawberry”; Field3 contains =12 34560 28

T

¢t €T ¥1 G1 9T LT 8T 6T O¢

=

{ Mr. Happy Pointer

29

< Sk |[UCHARS) Feserved
64 40 [BINARTY(4) Offzet to libraries in system Hbrary hst
68 44 [BIOTARY(4) Mumber of ibraries in systemn library list Soh 3
P 0 NOwW 4o you
72 48 BIVARYH Offzet t duct lib :
) SELT0 Procury Tbraties read variable
76 4C [BITARY() Mumber of product libraries offsets returned by
30 50 BIMARTY{4) Offset to current library an API using
34 54 |[BIMARY) MNumber of current ibraries pointers?
28 38 [BOTARY(Ciffzet to tbraries m user ibrary hat
92 5C |[BINAERTYE Mumber of ibraries in user library list
96 60 [BOTARY(Length of one ibrary array entry
See See ||Array(*) of System brary list (SJ
note note |CHAR®) format of ibrary arr; Offset
See | See |Array(*)of |Product libraries (Sef | Dec | Hex |Type Field
note | note ||CHAR(Y) format of ibrary arrd IThe fields ~ |CHAR(10) [Library name
See | See |Aray(*)of | Current borary (See | repeat for CHAR(50) |[Library text description
note || note |[CHAR() of ibrary array entry| (each library = D : b
See See |Array(*) of User library list (See| jobject BT Lf Ty el IO
note || note |[CHAR(®) of ibrary array entry| retuned in | |CHAR(10) |[Library ASP name
Note: The decimal and hexadecimal offsets depend on f [the array. |CI‘L1'1R("':) |Resen-‘ed
have in the various parts of vour ibrary lsts, The datais

T TOTTET

at the end. The array is sequential. Tt 15 an array or data structure. See CL
book for the total number of ibraries that can be returned.

Progratirning

TETHT LT

30

APl Variable Offset Example (1/3

FQSYSPRT O F 80 PRINTER

D QUSRJOBI PR ExtPgm('QUSRJ OBI')
D Rcwar 32767A options(*vars ize)
D RcwVarlLen 101 0 const

D Format 8A const

D QualJob 26A - const

D Internalld 16A const

D ErrorCode 32767A options(*vars ize: *nopass)
D Reset 1A options(*nopa ss)
D MyData ds based(p_MyDat a)

D OffsetUsrLibl 101 0 overlay(MyDat a: 89)
D NumUsrLibl 101 0 overlay(MyDat a: 93)
D EntryLen 101 0 overlay(MyDat a: 97)
D LibEntry ds based(p_LibEn try)

D LibName 10A

D Text 50A

D ASPNo 1010

D AspName 10A

31

API| Variable Offset Example (2/3

D DataSize S 1010
D x s 1010
lfree

DataSize = 1024 * 1024;
p. MyData = %alloc(DataSize);

QUSRJOBI(:MyData: DataSize: 'JOBIO750'; *'; *blank s);

for x = 0 to (NumUsrLibl - 1);
p_LibEntry = p. MyData + OffsetUsrLibl + (x * EntryL en);
except PrintLib;

endfor;

dealloc p_MyData;

*inlr = *on;
lend-free
OQSYSPRT E PrintLib
(@) LibName 10
(@] Text 62

32

APl Variable Offset Example (3/3

Display Spooled File

File: QSYSPRT Page/Line 1/1
Control Columns 1- 78
Find

*o L+ 2040304+ L5 vt BT

LIBSCK Scott Klement, Testing Library
LIBFGI Library for Finished Goods Inventory
LIBSHP Library for most shipping programs

LIBSAL Library containing all sales related pr 0gs
LIBACC Library for Accounting Programs, Menus, Etc
QGPL General Purpose Library
QTEMP
Bottom
F3=Exit F12=Cancel F19=Left F20=Right F24=M ore keys

User Spaces

USER SPACE = A disk object that acts very much like a memory allocation.

Characteristics of a user space:

- Created by calling an API.

- Can be marked “auto-extend” so that they’ll automatically get bigger as needed.
(With memory, you have to re-allocate to get a larger space.)

- You can get a pointer to a user space, and use it just as you would memory.

- You can base variables on a user space pointer, and use those variables like you
would any other RPG variable.

- As a disk object, it can be saved in-between calls.

- Useful for remember “last time | ran this” values.

- It can be backed up to tape or optical media

- It can be shared with other jobs on the system.

- APIs exist for reading/writing user spaces for languages that don’t support pointers.

- That includes OPM languages.

- APIs that need to return data that might be too large for an HLL variable will put their
data in a user space. That way, it's accessible from any IBM i language.

34

List APIs

Many of the APIs that need to return a list of something (jobs, libraries, objects,
modules, etc.) are called “List APIs”.

Characteristics:

- Accept a user space library/name to store the results in.

- The generated user space always starts with a “generic header”

- Generic header contains offset, count and entry size information needed to read the
list.

- The format of the list entries will vary depending on the API.

For example, you might want to get a list of the interactive jobs that are active on the
system. So you'd look for an API that does that.

- APIs by Category
- Work Management (deals with how the system processes it's workload)
- List Jobs (QUSLJOB) sounds good!

35

List APl Example (1/4)

AP| to create a user

FQSYSPRT O F 80 PRINTER space.

D QUSCRTUS PR ExtPgm('QUSCR TUS)

D UserSpace 20A CONST

D ExtAttrib 10A CONST

D InitialSize 101 0 CONST

D InitialvVal 1A CONST

D PublicAuth 10A CONST

D Text 50A CONST

D Replace 10A CONST options (*nopass)

D ErrorCode 32767A options(*vars ize:*nopass)

D QUSPTRUS PR ExtPgm(QUSPT RUs') +JAPI to get a pointer

D UserSpace 20A CONST {0 a user space.

D Pointer i

D QUSDLTUS PR ExtPgm(‘QUSDL TUS)

D UserSpace 20A CONST e

D ErrorCode 32767A options(*vars ize) AP] to delete a user
space object (when

we’re done.)

36

List APl Example (2/4)

D QUSLJOB PR ExtPgm('QUSLJ
D UserSpace 20A CONST

D Format 8A CONST

D QualJob 26A CONST

D Status 10A CONST

D ErrorCode 32767A options(*vars

D ErrorCode ds
D BytesProv
D BytesAvall

101:0inz(0)
101 0inz(0)

D ListHeader ds based(p_ListH

d ListOffset 101 0 overlay(ListH

d EntryCount 101 O overlay(ListH
d EntrySize 101 O overlay(ListH
D Entry ds based(p_Entry

D JobName 10A

D JobUser 10A

D JobNbr 6A

D IntJobld 16A

D Status 10A

D Type 1A

D SubType 1A

D x s 1010

D offset S 101 0

OB)

\ AP to list jobs into

a usSer space.

ize:*nopass)

<+«————— API Error Code

eader) Generic List
eageriiggg Header DS
eaaer:

eader:137) 4——1

)

A Data structure for
format JOBL0100

37

List APl Example (3/4)

Ilfree
QUSCRTUS('JOBLIST QTEMP!

'LISTAPY
11024 * 1024
x'00°
:*EXCLUDE!
:'User Space to Contain Job List'
YRS
: ErrorCode);

QUSLJOB('JOBLIST QTEMP!
:'JOBL0100!
™ALL *ALL
*ACTIVE'

: ErrorCode);

*ALL!

QUSPTRUS('JOBLIST - QTEMP!
:p_ListHeader);

for x = 1 to EntryCount;

offset = ListOffset + (x-1) * EntrySize;
p. Entry = p_ListHeader + offset;

Create a User
Space called
QTEMP/JOBLIST,
that's 1mb long.

List all active jobs
to user space.

Get a pointer to the
user space.

Calculate the offset to
each entry, and point
the ENTRY data
structure at it.

g If it's an interactive
endit, job, print it out.
endfor;

QUSDLTUS(JOBLIST - QTEMP!
: ErrorCode);
*INLR = *ON;
/end-free

Delete the user
space and end the
program.

38

List APl Example (4/4)

8QSYSPRT EJobName . Output specs to
. bl - rint job identifiers.

(@) JobNbr 28

Drumroll please... and the results are....

Display Spooled File

File: QSYSPRT Page/Line 1/1
Control Columns 1- 78
Find

oL+ 20400304+ LB vt BT
QPADEV0001 BIZUJAME 239996

DSPO1 KLEMSCOT 241320

ROGER KLEMROGE 242304
SYSCON QSECOFR 242331
DSPO7 MARYZ 242326
S9S1 CHERYL 242223

39

More Information

Getting Started with APIs (Scott Klement: System iN etwork Programming Tips)
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-0

Getting Started with APIs, Part 2
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-part-2

Getting Started with APIs. Follow up to Part 2
http://iprodeveloper.com/rpg-programming/follow-get ting-started-apis-part-2

Getting Started with APIs, Part 3
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-part-3-0

Getting Started with APls, Part 4
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-part-4

APIls by Example (Carsten Flensburg)
http://iprodeveloper.com/search/results/AP1s%20By%2 OExample

Fun with Pointers (Scott Klement: Personal Web site):
http://www.scottklement.com/rpg/pointers.html

IBM i Knowledge Center:
http://www-01.ibm.com/support/knowledgecenter/ssw i bm _i/welcome

40

This Presentation

You can download a PDF copy of this presentation fr

http://www.scottklement.com/presentations/

Thank you!

om.

41

