
APIs from RPG

Presented by

Scott Klement
http://www.scottklement.com

© 2006-2016, Scott Klement

A programmer's wife tells him: "Run to the store and pick up a
loaf of bread; If they have eggs, get a dozen." The programmer

comes home with 12 loaves of bread.

Getting Started With

2

What’s an API?

• An Interface
APIs represent a way for one application to interface with another one. For
example, Order Entry software might need to interface with Shipping software to
determine a shipping charge.

• Program or Procedure Calls
Usually APIs are implemented as programs or subprocedures that you call and
pass parameters to.

• Program to Program (or Procedure to Procedure)
APIs are designed to be used by programs. They’re not (usually) intended to
be called from the command line, menu, etc. Instead, they’re called from a
program. They don’t take their input from a keyboard, but instead from a
parameter. They write their output to a parameter, and not to a screen or
paper. They are programs intended to be called by programs.

• Who writes APIs?
Anyone can write an API. In fact, you’ve probably already written some.

API = Application Programming Interface

3

The IBM i APIs

IBM provides over 3200 different programs and
procedures that you can call to interface with the
various functions of the operating system!

This presentation focuses on how to
get started using the IBM i APIs from
an RPG IV (ILE RPG) program.

We’ll start by examining how IBM’s documentation is
laid out, and discuss how to find the API you’re
looking for, as well as which parameters it needs.

4

Methods for Finding APIs

There are two different scenarios where you might b e
looking for information about APIs:

• When you know the name of the API, but you don’t know what it
does (usually when you’re trying to understand someone else’s
code)

• When you know what you want to do, but you don’t know which API
does the job.

IBM provides 3 ways of finding APIs:
• APIs by Category (When you don’t know the API name.)

• API finder (When you do know the API name or title.)

• Alphabetical Listing of APIs (I’ve never found a use for this.)

5

APIs are in the
Knowledge Center
under:

�Your release
�Programming
�Application

programming
interfaces

http://www-01.ibm.com/support/knowledgecenter/ssw_i bm_i/welcome

6

For example...

Let’s say you’re reading a program, and you see cod e like the
following:

In this case, you may not be sure what QDCRDEVD does, but you know it’s
name. In that case, you want to be able to type the name and get
information about the API.

To do that, you’ll use the API Finder.

CHGVAR VAR(%BIN(&RCVVARLEN)) VALUE(1000)

CALL PGM(QDCRDEVD) PARM(&RCVVAR +
&RCVVARLEN +
'DEVD0600' +
&DEV +
&ERRCODE)

CHGVAR VAR(&ADDR) VALUE(%SST(&RCVVAR 878 15))

7

API Finder (1 of 2)

The API finder is for searching for an API. It’s t he “Google” for
IBM i API information.

8

API Finder (2 of 2)

9

Found it… Now What?

Either the API finder has found a link to the API you were looking for, or
you’ve found it by browsing the categories.

The next step is to click that link and read the documentation for the API
itself.

This information is divided into sections that will be explained in
upcoming slides:

• Parameter Summary Area

• API Description, Locks & Authority Info

• Detailed Information about parameters

• Error Information

10

API Parameter Summary
At the top of each API’s page

These
Parameters are
Required, (must

always be
passed.)

These aren’t required,
but if you pass one,
you have to pass

them all.

Same here,PLUS in
order to pass group 2,

you must also pass
group 1.

QMHSNDPM is the name
of the program to call.

How the API
uses the

parm:
Data type of

the parm:

11

QMHSNDPM Example (1 of 2)

D QMHSNDPM PR EXTPGM('QMHSN DPM')
D MsgID 7A const
D MsgFile 20A const
D MsgData 32767A const options (*varsize)
D MsgDtaLen 10I 0 const
D MsgType 10A const
D StackEntry 10A const
D StackCount 10I 0 const
D MsgKey 4A
D ErrorCode 32767A options(*vars ize)

D ErrorCode ds
D BytesProv 10I 0 inz(0)
D BytesAvail 10I 0 inz(0)

D Msg s 200A
D MsgKey s 4A

/free
Msg = 'This is a test. Don''t read this.';

QMHSNDPM('CPF9897': 'QCPFMSG *LIBL': Msg:
: %len(%trimr(Msg))
: '*DIAG': '*': 0: MsgKey: ErrorCode);

*INLR = *ON;
/end-free

Use CONSTfor “Input”
parameters.

BINARY(4) is always
“10I 0” in RPG IV .

More about data
types later.

12

QMHSNDPM Example (2 of 2)

13

Data Types

The data types that are listed for each API are usually pretty self explanatory.

Examples:

• CHAR(20) = character field, 20 long (20A in RPG)

• PACKED(15,5) = packed, 15 digits w/5 decimal places (15P 5 in RPG)

• POINTER(SPP) = Pointer. (Data type * in RPG – more info later!)

However, there are two data types that seem to caus e a lot of confusion:

• BINARY(4) = 4 byte binary integer. (10I 0 in RPG)

• BINARY(4), UNSIGNED = 4 byte unsigned binary integer (10U 0 in RPG)

• CHAR(*) = Character field with a special length, not VARYING (Declare this
as a long character field with options(*VARSIZE) on the prototype.)

NOTE: In RPG, we declare our numeric fields by the number of digits we can store in them. So a “9P
0” field is 5 bytes long, but stores a 9 digit number. A “10I 0” field is a binary integer that’s 4 bytes
long, but stores a 10 digit number. NEVER USE THE “B” DATA TYPE, IT’S NOT A TRUE BINARY
INTEGER. THE I AND UDATA TYPES ARE, AND THEY RUN MUCH FASTER, TOO.

14

API Description
On the API’s page, after the Parameter Summary.

Description of
what the API

does.

Info about what sort of
authority users will

need for their program
to call this API.

(This is the bottom of the box
around the parm summary)

15

Detailed Parameter Descriptions
On the API’s page, after the Authorities and Locks

There are
detailed

descriptions of
all of the APIs
parameters.

This is what
usually takes up

most of the
space on each

API’s page.

16

Errors the API can Return
At the end of each API’s manual page

Sometimes there
are additional

notes about why
an error might be

caused.

17

API Error Handling (1/2)

NOTE: The CEE APIs, and the Unix-type APIs have sep arate mechanisms
for error handling that I do not cover here. They a re documented in the
Knowledge Center, however.

Offset
Use Type FieldDec Hex

0 0 Input Binary(4) Bytes Provided
4 4 Output Binary(4) Bytes Available
8 8 Output Char(7) Exception ID
15 F Output Char(1) Reserved
16 10 Output Char(*) Exception Data

• This structure is passed in a parameter to the API.
• Bytes Provided should tell the API how big the DS is. (That way, you can control the

size of the Exception Data field!) You must set this before calling the API. Don’t
leave it blank! (x’40404040’ = 1,077,952,576)

• Bytes Available tells you how much error data the API sent back.
• You can leave off the fields on the end, as long as Bytes Provided is correct.
• You can set Bytes Provided to zero if you’d like the API to send you an *ESCAPE

message when it fails.

18

API Error Handling (2/2)

D ErrorCode ds
D BytesProv 10I 0 inz(0)
D BytesAvail 10I 0

Sends an *ESCAPE
message. Program will

crash if you don’t
monitor for it.

D ErrorCode ds
D BytesProv 10I 0 inz(%size(ErrorCode))
D BytesAvail 10I 0 inz(0)
D MsgId 7A
D 1A
D MsgData 1024A

.

.
CALLP QMHSNDPM(…other parms here… : ErrorCode);

if (BytesAvail > 0);
ErrMsg = MsgId + ‘ occurred called QMHSNDPM API!’;
// show ErrMsg to user!

endif;

If you assume the API will always succeed do this. Then, if something weird does
happen, the program will halt and there’ll be good diagnostic info in the job log.

If you want to handle errors in your code, use this syntax instead. Nothing will go to the
job log, it’s up to you to handle errors:

The use of %SIZE is a
good idea. Let the

compiler do the work,
and help you when
you need to make

changes.

This way, if BytesAvail
isn’t zero after calling

the API, you know
there’s an error.

19

Complex Parameters (Formats)

A format is a code that identifies the format of a data structure. (It’s similar in concept
to a record format.)

When an API can return different types of data, or can return it in many different
formats (or would like to be able to do that at some point in the future!) it requests a
format.

Let’s say you’re writing an interactive program, and you want to know the IP address of
your user’s PC.

To find this out, you’ll need to retrieve information about the Display Device that he’s
using. This is done with the “Retrieve Device Description (QDCRDEVD)” API.

This API returns all sorts of information about a device. There are hundreds of fields
that it can return!

It returns different information, depending on what sort of device you’d like information
about. A tape device (*TAP) has very different information than a display device
(*DSP)!

A format name typically looks something like this:

DEVD0600

20

Formats in the Manual (1/3)

The first two parms tell the
API which data structure to

return info into.

The format name tells the API
what the data structure looks

like.

The “device name” tells the
API which device you’re

interested in.

But, what do you put
for the format name?

21

Formats in the Manual (2/3)

To find the
possible format
names, scroll
down to the

detailed
information for

the required
parameter group.

This is what
you’ll find:

22

Formats in the Manual (3/3)

To learn how
your data

structure must
be formatted,
scroll down to

the detail info for
DEVD0600

(part of it is
shown on the

right.)

23

Formats & Data Structures

D QDCRDEVD PR ExtPgm('QDCRD EVD')
D RcvVar 32767A options(*vars ize)
D RcvVarLen 10I 0 const
D Format 8A const
D Device 10A const
D ErrorCode 32767A options(*vars ize)

D ErrorCode ds
D BytesProv 10I 0 inz(%size(Err orCode))
D BytesAvail 10I 0 inz(0)
D MsgId 7A
D 1A
D MsgDta 1024A

D MyData ds
D IP_Address 15A overlay(MyDat a:878)

/free

QDCRDEVD(MyData : %size(MyData) : 'DEVD0600'
: Device : ErrorCode);

if (BytesAvail > 0);
// handle error

endif;

Note: The start
position is one
higher than the

offset in the
manual.

24

Formats w/Variable Offsets

When the API docs tell you the position of the fields that it returns, it refers to that
position as an offset.

OFFSET = Distance (in bytes) between the start of the data, and the point where the
field starts.

In other words, it’s a count of bytes from the start.
The first field is always at offset 0 because it’s at the start.

Sometimes, the offset of data that it returns won’t be at a fixed position. Instead, it’ll
pass you a variable that contains the offset of the field!

This is common when:
• Preceding data was variable-length.

• A list of repeating fields is returned. (such as a list of jobs on the system, list of
objects in a library, etc.)

The best way to deal with variable offsets is with pointer logic.
Never, ever hard-code an offset when an API passes it to you in a parameter!

25

API Docs w/Var Offsets (1/2)

This is from format
JOBI0750 of the

Retrieve Job
Information

(QUSRJOBI) API.

It’s for retrieving
the library list for a

given job.

26

API Docs w/Var Offsets (2/2)

Each Library at the
variable offsets

follows the format
of a “Library Array
Entry”. Here’s that

format:

Note that the length of that array entry is also va riable.

The offset from the previous slide tells us where t he first library is.
The second library will be immediately after the fi rst.

The Length of One Library Array Entry field tells us where the
second one starts. (As well as the third, and four th, and so on.)

27

Introduction to Pointers

The best way to handle variable offsets is with pointer logic.

POINTER = A variable that stores an address in the system’s main storage (or,
“memory”).

Just as a packed (or zoned) field is a variable designed to hold a decimal number, and
a date field is designed to hold a date, and a time field is designed to hold a time, a
pointer field is designed to hold an address in your system’s memory.

What can you do with pointer fields?
• Set them to *NULL (“this pointer doesn’t currently have an address in it.”)
• Store the address of another variable in them.
• Ask the system to reserve (or “allocate”) memory, then store the address of that

memory in them.
• Add an offset to them (calculate the address X number of bytes later in memory)
• Subtract one pointer from another to calculate the offset between them.
• Base a variable on them

Based Variables
• Memory isn’t automatically reserved to store their values.
• Instead, you control the place in memory where they reside.
• You can change it on the fly by changing the pointer.

28

Trivial Pointer Examples
D FIELD1 s 10A
D p_Field2 s * inz(*NULL)
D FIELD2 s 1A Based(p_Field 2)
D FIELD3 s 7P 0 inz(1234567)

/free
Field1 = ‘Mashville’;

p_Field2 = %addr(Field1);
Field2 = ‘N’;

Field1 now contains “Nashville”

p_Field2 = %addr(Field1) + 5;

Field2 now contains “i”

Field1 = ‘Strawbeary’;

Field2 now contains “b”

p_Field2 = p_Field2 + 2;
Field2 = ‘r’;
p_Field2 = %addr(Field3) + (%size(Field3) – 1);
Field2 = x’0D’;

Field1 now contains “Strawberry”, Field3 contains -12 34560

29

S
 t r a w

 b e a r y

11 10 9 8 7 6 5 4 3 2 1

Mr. Happy Pointer

M a s h v i l l e

21 20 19 18 17 16 15 14 13 12

N

r

30

Hey wait, what happened to APIs?

So how do you
read variable

offsets returned by
an API using

pointers?

31

API Variable Offset Example (1/3)

FQSYSPRT O F 80 PRINTER

D QUSRJOBI PR ExtPgm('QUSRJ OBI')
D RcvVar 32767A options(*vars ize)
D RcvVarLen 10I 0 const
D Format 8A const
D QualJob 26A const
D InternalId 16A const
D ErrorCode 32767A options(*vars ize: *nopass)
D Reset 1A options(*nopa ss)

D MyData ds based(p_MyDat a)
D OffsetUsrLibl 10I 0 overlay(MyDat a: 89)
D NumUsrLibl 10I 0 overlay(MyDat a: 93)
D EntryLen 10I 0 overlay(MyDat a: 97)

D LibEntry ds based(p_LibEn try)
D LibName 10A
D Text 50A
D ASPNo 10I 0
D AspName 10A

32

API Variable Offset Example (2/3)

D DataSize s 10I 0
D x s 10I 0

/free
DataSize = 1024 * 1024;
p_MyData = %alloc(DataSize);

QUSRJOBI(MyData: DataSize: 'JOBI0750': '*': *blank s);

for x = 0 to (NumUsrLibl - 1);
p_LibEntry = p_MyData + OffsetUsrLibl + (x * EntryL en);
except PrintLib;

endfor;

dealloc p_MyData;
*inlr = *on;

/end-free

OQSYSPRT E PrintLib
O LibName 10
O Text 62

33

API Variable Offset Example (3/3)

Display Spooled File
File : QSYSPRT Page/Line 1/1
Control Columns 1 - 78
Find
*...+....1....+....2....+....3....+....4....+....5. ...+....6....+....7....+...
LIBSCK Scott Klement, Testing Library
LIBFGI Library for Finished Goods Inventory
LIBSHP Library for most shipping programs
LIBSAL Library containing all sales related pr ogs
LIBACC Library for Accounting Programs, Menus, Etc
QGPL General Purpose Library
QTEMP

Bottom
F3=Exit F12=Cancel F19=Left F20=Right F24=M ore keys

34

User Spaces

USER SPACE = A disk object that acts very much like a memory allocation.

Characteristics of a user space:
• Created by calling an API.
• Can be marked “auto-extend” so that they’ll automatically get bigger as needed.

(With memory, you have to re-allocate to get a larger space.)
• You can get a pointer to a user space, and use it just as you would memory.
• You can base variables on a user space pointer, and use those variables like you

would any other RPG variable.
• As a disk object, it can be saved in-between calls.
• Useful for remember “last time I ran this” values.
• It can be backed up to tape or optical media
• It can be shared with other jobs on the system.
• APIs exist for reading/writing user spaces for languages that don’t support pointers.
• That includes OPM languages.
• APIs that need to return data that might be too large for an HLL variable will put their

data in a user space. That way, it’s accessible from any IBM i language.

35

List APIs

Many of the APIs that need to return a list of something (jobs, libraries, objects,
modules, etc.) are called “List APIs”.

Characteristics:
• Accept a user space library/name to store the results in.
• The generated user space always starts with a “generic header”
• Generic header contains offset, count and entry size information needed to read the

list.
• The format of the list entries will vary depending on the API.

For example, you might want to get a list of the interactive jobs that are active on the
system. So you’d look for an API that does that.

• APIs by Category
• Work Management (deals with how the system processes it’s workload)
• List Jobs (QUSLJOB) sounds good!

36

List API Example (1/4)

FQSYSPRT O F 80 PRINTER

D QUSCRTUS PR ExtPgm('QUSCR TUS')
D UserSpace 20A CONST
D ExtAttrib 10A CONST
D InitialSize 10I 0 CONST
D InitialVal 1A CONST
D PublicAuth 10A CONST
D Text 50A CONST
D Replace 10A CONST options (*nopass)
D ErrorCode 32767A options(*vars ize:*nopass)

D QUSPTRUS PR ExtPgm('QUSPT RUS')
D UserSpace 20A CONST
D Pointer *

D QUSDLTUS PR ExtPgm('QUSDL TUS')
D UserSpace 20A CONST
D ErrorCode 32767A options(*vars ize)

API to create a user
space.

API to get a pointer
to a user space.

API to delete a user
space object (when

we’re done.)

37

List API Example (2/4)
D QUSLJOB PR ExtPgm('QUSLJ OB')
D UserSpace 20A CONST
D Format 8A CONST
D QualJob 26A CONST
D Status 10A CONST
D ErrorCode 32767A options(*vars ize:*nopass)

D ErrorCode ds
D BytesProv 10I 0 inz(0)
D BytesAvail 10I 0 inz(0)

D ListHeader ds based(p_ListH eader)
d ListOffset 10I 0 overlay(ListH eader:125)
d EntryCount 10I 0 overlay(ListH eader:133)
d EntrySize 10I 0 overlay(ListH eader:137)

D Entry ds based(p_Entry)
D JobName 10A
D JobUser 10A
D JobNbr 6A
D IntJobId 16A
D Status 10A
D Type 1A
D SubType 1A

D x s 10I 0
D offset s 10I 0

Generic List
Header DS

API Error Code

API to list jobs into
a user space.

Data structure for
format JOBL0100

38

List API Example (3/4)
/free

QUSCRTUS('JOBLIST QTEMP'
: 'LISTAPI'
: 1024 * 1024
: x'00'
: '*EXCLUDE'
: 'User Space to Contain Job List'
: '*YES'
: ErrorCode);

QUSLJOB('JOBLIST QTEMP'
: 'JOBL0100'
: '*ALL *ALL *ALL'
: '*ACTIVE'
: ErrorCode);

QUSPTRUS('JOBLIST QTEMP'
: p_ListHeader);

for x = 1 to EntryCount;

offset = ListOffset + (x-1) * EntrySize;
p_Entry = p_ListHeader + offset;

if (Type = 'I');
except;

endif;
endfor;

QUSDLTUS('JOBLIST QTEMP'
: ErrorCode);

*INLR = *ON;
/end-free

Create a User
Space called

QTEMP/JOBLIST,
that’s 1mb long.

Get a pointer to the
user space.

Calculate the offset to
each entry, and point

the ENTRY data
structure at it.

List all active jobs
to user space.

If it’s an interactive
job, print it out.

Delete the user
space and end the

program.

39

List API Example (4/4)

OQSYSPRT E
O JobName 10
O JobUser 21
O JobNbr 28

Output specs to
print job identifiers.

Display Spooled File
File : QSYSPRT Page/Line 1/1
Control Columns 1 - 78
Find
*...+....1....+....2....+....3....+....4....+....5. ...+....6....+....7....+...
QPADEV0001 BIZUJAME 239996
DSP01 KLEMSCOT 241320
ROGER KLEMROGE 242304
SYSCON QSECOFR 242331
DSP07 MARYZ 242326
S9S1 CHERYL 242223

Drumroll please… and the results are….

40

More Information

Getting Started with APIs (Scott Klement: System iN etwork Programming Tips)
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-0

Getting Started with APIs, Part 2
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-part-2

Getting Started with APIs. Follow up to Part 2
http://iprodeveloper.com/rpg-programming/follow-get ting-started-apis-part-2

Getting Started with APIs, Part 3
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-part-3-0

Getting Started with APIs, Part 4
http://iprodeveloper.com/rpg-programming/getting-st arted-apis-part-4

APIs by Example (Carsten Flensburg)
http://iprodeveloper.com/search/results/APIs%20By%2 0Example

Fun with Pointers (Scott Klement: Personal Web site):
http://www.scottklement.com/rpg/pointers.html

IBM i Knowledge Center:
http://www-01.ibm.com/support/knowledgecenter/ssw_i bm_i/welcome

41

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

Thank you!

