
A Pattern for Reusable RPG Code
with ILE

Presented by

Scott Klement
http://www.scottklement.com

© 2008-2010, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’ t.”

2

Objectives Of This Session

• Understand the "Pattern" Concept

• Important Concepts for Engineering ILE
Applications

• Links to More Information

You'll want to be familiar with ILE concepts (procedures, modules,
service programs) to get the most out of this session.

3

So You've Learned ILE…

Over the past few years of talking to folks who learn ILE concepts, I've noted:

• People leave the conference understanding the basic concepts

• Procedures, modules, service programs, binding and activation groups

• People get back to the office and try to use them, but…

• Can't find a use for the concepts

• Find the concepts "too complicated" to use in the real world.

• Can't get the concepts to fit into the way they're used to writing
programs.

• Find that ILE decreases their productivity.

There's more to learning ILE than understanding the basic concepts!

4

A Different Way of Thinking

People find it easy to learn RPG IV, but hard to incorporate ILE because it
requires changing the way you think about your code.

You see, as we write code, we develop "patterns" in our minds

• Mental "templates" (or "skeletons") of how a program should work

• Over time these become habits!

• Or, even become the way we think about software development

• Indeed, amongst software engineers, many patterns have been written
down and "formalized" – but this talk isn't about the specific, formal
patterns.

When your only tool is a hammer, all problems start to look like a nail.

-- or –

When a hammer is the only tool you've ever used, a screwdriver
seems alien, unnatural, and slow.

5

Simple Pattern Example (Screen)

01/ 01/ 08 Cust omer Mai nt enance

Cust omer t o change: 12345

F3=Exi t F10=Add New Cust omer

The way we used to do things in green screens involved a pattern – this
example illustrates the first screen of a customer maintenance program.
Here the user keys in a customer number… this number is used to load a
customer record that will be changed on the next screen.

Due to the limited amount of space in this presentation, I'm only showing the
first screen.

6

Simple Pattern Example (RPG/400)

C SCRN1 BEGSR
C SCMSG DOUEQ* BLANKS

*
C EXFMTCUSTS1
C MOVE * BLANKS SCMSG

*
C * I N03 I FEQ * ON
C MOVE * ON * I NLR
C RETRN
C ENDI F

*
C SCCUST CHAI NCUSTFI LE N99
C * I N99 I FEQ * ON
C * I N10 ANDEQ* OFF
C MOVELERR, 1 SCMSG
C ENDI F

*
C * I N99 I FEQ * OFF
C * I N10 ANDEQ* ON
C MOVELERR, 2 SCMSG
C ENDI F

*
C ENDDO
C ENDSR

7

Simple Pattern (Description)

The RPG/400 code sample on the last slide shows one pattern that I used in
all of my old programs.

1. Put a "message" field on the screen.
2. Loop until the message field is blanks (no errors)
3. Display the screen.
4. Clear the message.
5. Check for exit keys (F3, F12)
6. Check the user's input (often combined with loading records for later)
7. Repeat loop (per 2, above)

In this pattern, the bulk of the work was usually in checking the user's input.
On a more sophisticated screen, it might involve checking the validity of a
price, verifying that we had adequate stock to fulfill an order, and so forth.

Essentially, the business logic was interwoven into the loop for the display logic.

8

Same Pattern, Different Program

01/ 01/ 08 Add I t em t o Or der

Or der : 61435

Cust omer : 12345

I t em: 54321

Qt y: ___________

Pr i ce: _______________

F12=Cancel

This program adds an item to an existing customer order. This is the 2nd
screen in the program – the order number and customer number have
already been established – the user needs to type an item number, quantity
and price for the new item.

9

Same Pattern Example (1 of 2)

C SCRN1 BEGSR
C SCMSG DOUEQ* BLANKS

*
C EXFMTADDI TEMS2
C MOVE * BLANKS SCMSG

*
C * I N12 I FEQ * ON
C LEAVESR
C ENDI F

*
C SCCUST CHAI NCUSTFI LE 99
C * I N99 I FEQ * ON
C MOVELERR, 1 SCMSG
C I TER
C ENDI F

*
C SCI TEM CHAI NI TEMFI LE 99
C * I N99 I FEQ * ON
C MOVELERR, 2 SCMSG
C I TER
C ENDI F

*
C PRCKEY KLI ST
C KFLD CUZONE
C KFLD CUTRAD
C KFLD SCI TEM

10

Same Pattern Example (2 of 2)

C PRCKEY CHAI NPRCFI LE 99
C * I N99 I FEQ * ON
C MOVELERR, 3 SCMSG
C I TER
C ENDI F

*
C SCPRI C I FEQ 0
C Z- ADDPRPRI C SCPRI C
C MOVELERR, 4 SCMSG
C I TER
C ENDI F

*
C SCPRI C I FLT PRLPRC
C MOVELERR, 5 SCMSG
C I TER
C ENDI F

*
C SCPRI C I FGT PRHPRC
C MOVELERR, 6 SCMSG
C I TER
C ENDI F

*
* . . . Code t o val i dat e quant i t y goes her e . . .
*

C ENDDO
C ENDSR

11

What's Wrong With That?

Business logic interwoven is into display, it's difficult to separate the two.
• What if I wanted to apply the same business rules in a non-interactive program?
• What if I wanted to have a different screen interface? (Web? GUI?)
• Or even a different 5250 application, for that matter?

Maybe I'd copy/paste/modify the code – then I'd have the business rule in
many places!

• When logic has to change – it's a chore.
• Maybe I'd use a copy book??

• But the code would have to be written carefully.
• Changes to code in the copybook would require careful, detailed analysis.

Agility problems
• If it's difficult to change your code – your company becomes less "agile"
• Harder to change with the times.
• Your program code should be dictated by your business needs! Not vice-versa!
• IT becomes a hindrance to the company.

12

What's Wrong – Example

In the "Same Pattern Example" slides, I illustrated code to calculate a price
• Look up the customer's trade class and price zone.
• Look up a price record in the price list file
• If the user gave no price, use the list price
• If the user gave a price, make sure it's within the "high/low" range.

In the real world this might be more sophisticated
• Based on the current livestock prices (or other market pricing)
• Based on raw material costs, etc.

My code is interwoven into the display logic – so it ends up being repeated
• Retail Sales
• Food Service Sales
• EDI sales
• Web orders
• Batch updates for market pricing
• "Add-To" program (from example)

. . . Now management decides to price things differently . . .

13

Ground Rules for a New Pattern

It's important to take a new approach -- a new pattern. One that makes it easier to write re-usable
business logic. Ultimately the goal is to write our business logic (such as how to calculate and
validate a price) only once.

MVC (Model, View, Controller)

The code that implements business rules must be kept separate from the code that implements the
user interface.

SOA (Service-Oriented Architecture)

Business logic should be organized into a set of re-usable "services".

Name Spaces

Business logic routines must be callable from anywhere without danger of naming conflicts.

Encapsulation

The business logic should know NOTHING about the display logic, and vice-versa. This prevents
them from becoming interwoven.

14

More About Naming

A symbolic prefix is determined. Up to 7 chars.
• ORDER for service progam that works with orders.
• CUST for service program that works with customers
• PURCH for purchase orders
• FGI for finished goods inventory
• etc.

• Modules (usually only one) are named with that prefix, followed by an optional number, and language ID.
• ORDERR4, ORDER2R4, ORDER3CL
• CUSTCL, CUST2R4
• etc.

• Subprocedures ("services") are prefixed as well.
• ORDER_new()
• ORDER_getHeader()
• ORDER_getShipTo()
• ORDER_getBillTo()
• ORDER_getAllItems()
• ORDER_setItem()
• ORDER_checkItem()
• ORDER_checkPrice()
• ORDER_error()

• Service program is same as "first" module.
• Copy book is the symbolic prefix with an _H (for "header") appended.

TIP:
Namespaces also make it easier to

read/debug the code. When you see a
routine being called, you know which
service program it's calling!

Compare:
CheckAPr i ce()

vs:
ORDER_checkPr i ce()

15

With Existing Naming Conventions

Many shops already have a naming convention in place that's based on the IBM i limit of 10
characters per object name. They use this convention to get all of the information they need into
the name.

Here's an example of one such convention:

RGORP941 (or ORP941RG, or ORP941, etc)
RG = RPG language
ORP = application (abbreviation for order processing)
941 = number to make this program's name unique.

This works very well as the "prefix" under the new pattern. For example:
• RGORP941_newOrder()
• RGORP941_getHeader()
• RGORP941_getItems()
• Etc.

This makes the names in the older naming convention easier to understand, while still
preserving the value of the naming convention.

16

M V C Pattern

The pattern I use for ILE applications is very much based on the "MVC" pattern.

M = Model -- this is your business logic and business rules. (also database)

V = View -- this is the user interface. (Important: Not always a screen!)
• Might be a 5250 (green screen display)
• Might be a batch job, and the user interface is a spooled file.
• Might be a web interface
• Etc.

C = Controller -- the piece of code that controls the flow of the application.
• Calls the correct "model" routines and "View" routines
• Called in the right order to make an application.
• Passes data between them

17

The Model (Business Logic) (1 of 5)

H NOMAI N

FORDHEAD UF A E K DI SK USROPN
FORDI TEM UF A E K DI SK USROPN
FCUSTFI LE I F E K DI SK USROPN
FI TEMFI LE I F E K DI SK USROPN
FCTRLFI LE UF A E K DI SK USROPN

/ copy ORDER_H

. . . Pr ot ot ypes f or " i nt er nal r out i nes" her e . . .

D I ni t i al i zed s 1N i nz(* OFF)
D l ast Er r Num s 10i 0
D l ast Er r Msg s 80a var yi ng

Service programs are
always "nomain" since

you only call their
subprocedures.

Files are always
"USROPN"

Copy book is the
symbolic name with _H

appended (another
good way is to use the

same name as the
srvpgm, but put the

copy book in a different
source file such as

"QPROTOSRC", etc.Prototypes for "Internal routines" are for subprocedures that are
called from other routines in the service program, but are not
available outside of the service program. Restricting who can
call routines improves "agility" – when you know that nothing
else calls a routine, it's easy to change it.

Prototypes for exported routines are in the copy book.

18

The Model (Business Logic) (2 of 5)

P openFi l es B
D openFi l es PI

/ f r ee
moni t or ;

i f (I ni t i al i zed) ;
r et ur n;

endi f ;

open ORDHEAD;
open ORDI TEM;
open CUSTFI LE;
open I TEMFI LE;
open CTRLFI LE;

I ni t i al i zed=* ON;
r et ur n;

on- er r or ;
c l ose * al l ;
I ni t i al i zed=* OFF;

endmon;

/ end- f r ee
P E

Every service program
has an "openFiles"

routine. It opens all of
the USROPN files.

The "Initialized"
variable prevents this
code from being run

more than once.

If something goes
wrong, close everything

so the user can start
again from scratch.

The openFiles routine is a great place to insert OVRDBFs,
or any other code that should be done before the files are
opened. REMEMBER: the caller should know nothing about
how your routines work – including which files they use – and
therefore they should not have to issue overrides!!

19

The Model (Business Logic) (3 of 5)

P ORDER_get Pr i ce. . .
P B expor t
D ORDER_get Pr i ce. . .
D PI 9p 2
D Cust No 8a const
D I t emNo 10a const

/ f r ee
openFi l es() ;

chai n Cust No CUSTFI LE;
i f not %f ound;

set Er r or (ORDER_CUSTNF: ' Cust omer not f ound') ;
r et ur n - 1;

endi f ;

chai n (cuZone: cuTr ad: I t emNo) PRCFI LE;
i f not %f ound;

set Er r or (ORDER_PRI CENF: ' No ent r y i n pr i ce l i s t ') ;
r et ur n - 1;

endi f ;

r et ur n pr Pr i c;
/ end- f r ee

P E

"export" means that it's
callable from outside the

module.

Encapsulation is
achieved by perfecting
the parameter list. The
more restrictive you are
on how parameters can
be passed, the easier it'll

be to be "agile" later.

All "export" procedures
call this first –

(remember, it protects
itself against opening

the files twice.)

setError() is another
internal routine – used

for error reporting –
more later.

-1 is used as an "error
flag"

20

The Model (Business Logic) (4 of 5)

P ORDER_checkPr i ce. . .
P B expor t
D ORDER_checkPr i ce. . .
D PI 1N
D Cust No 8a const
D I t emNo 10a const
D Pr i ce 9p 2 const

/ f r ee
openFi l es() ;

chai n Cust No CUSTFI LE;
i f not %f ound;

set Er r or (ORDER_CUSTNF: ' Cust omer not f ound') ;
r et ur n * OFF;

endi f ;

chai n (cuZone: cuTr ad: I t emNo) PRCFI LE;
i f not %f ound;

set Er r or (ORDER_PRI CENF: ' No ent r y i n pr i ce l i st ') ;
r et ur n * OFF;

endi f ;

i f (Pr i ce<pr LPr c or Pr i ce>pr HPr c)
set Er r or (ORDER_I LLPRC: ' I l l egal pr i ce f or t hi s or der ') ;
r et ur n * OFF;

el se;
r et ur n * ON;

endi f ;
/ end- f r ee

P E

I put all of my business logic
routines that pertain to "Orders" in
the same service program. If that
service program gets too large, I will
build the service program from more
than one module.

Note that the caller doesn't care
whether the service program is
made from one or ten modules.

21

The Model (Business Logic) (5 of 5)

P set Er r or B
D set Er r or PI
D Er r I d 10i 0 const
D Er r Msg 80a var yi ng const

/ f r ee
l ast Er r Num = Er r I d;
l ast Er r Msg = Er r Msg;

/ end- f r ee
P E

P ORDER_er r or B expor t
D ORDER_er r or PI 80A var yi ng
D Er r or I d 10i 0 opt i ons(* nopass: * omi t)

/ f r ee
i f %par ms>=1 and %addr (Er r or I d) <>* nul l ;

Er r or I d = l ast Er r Num;
endi f ;
r et ur n l ast Er r Msg;

/ end- f r ee
P E

Error handling… error
message and id are set
by setError. To find out
what happened, the caller
can always call
ORDER_error to get the
last error number and
message.

Note that this is NOT
"stateless" – which has
drawn some criticism (but
see the "stored procedure
wrappers" , later…)

22

Model Copy Book (1 of 2)

D ORDER_PRI CENF. . .
D c const (1101)
D ORDER_CUSTNF. . .
D c const (1102)
D ORDER_I LLPRC. . .
D c const (1103)
D ORDER_ERROR_I TEM_NOT_FOUND. . .
D c const (1104)

* *
* Or der _checkPr i ce() : Check t he pr i ce of an i t em
*
* Cust No = (i nput) Cus t omer number
* I t emNo = (i nput) i t em number
* Pr i ce = (i nput) pr i ce t o val i dat e
*
* Ret ur ns * ON when pr i ce i s val i d, * OFF ot her wi se.
* *

D ORDER_checkPr i ce. . .
D PR 1N
D Cust No 8a const
D I t emNo 10a const
D Pr i ce 9p 2 const

. . . Ot her pr ot ot ypes her e . . .

Everything in the
copy book will be
used by callers –
so should use the
"ORDER" prefix.

Note that names
can be up to 4096
long. Use . . . to
extend them, if
needed.

23

Model Copy Book (2 of 2)

* *
* Templ at e f or 1 l i ne of an or der
* *

D Or der _I t em_t ds qual i f i ed
D based(Templ at e)
D Li neNo 3p 0
D I t emNo 8a
D Qt y 5p 0
D Pr i ce 9p 2
D Desc 20a

* *
* Or der _l oadI t ems() : Rout i ne t o l oad t he i t ems
* on an exi st i ng or der on di sk .
*
* Or der No = (i nput) Or der t o l oad f r om di sk
* Count = (out put) number of i t ems on or der
* I t em = (out put) ar r ay of i t ems on or der
*
* Ret ur ns * ON when successf ul , * OFF ot her wi se.
* *

D Or der _l oadI t ems. . .
D PR 1N
D Or der No 10a const
D Count 3p 0
D I t em l i keds(Or der _I t em_t) di m(999)

It's very important that
anything referenced by
" like" or " likeds" (or other
similar tools) be provided in
the same copy book – this
helps provide proper
encapsulation.

In this case, the data
structure referenced with
LIKEDS is defined in the
same copy book (and
prefixed into the ORDER
name space)

BASED(Template) stops
RPG from allocating
memory for the variable

24

Model – Closing Thoughts

• Remember that the goal is to engineer (not just throw together) an interface

• That interface should be re-usable from just about anywhere.

• Think of it as creating your own API (because that's what it really is) for your
application

• Or, you might think of it as creating your own programming language, with op-codes
specifically for your business rules.

• Some folks like to "externalize" their database – i.e. put the database in a separate
module from the business rules. (in that case, you'd have MVCD – Model, View,
Controller, Database).

• Useful if you might want to use a different method of storing data some day.
• Maybe switch to SQL Server? Oracle? MySQL?

• Maybe switch to using XML? Stream files?
• Personally, I don't see that as likely, so I'm happy to put my database logic in

with the business logic. (I don't see my database changing any time soon.)

25

The Controller (Program Flow)

D St ep s 10i 0
/ f r ee

sel ect ;
when st ep = 0;

i f (myVI EW_get Or der (Or der : Cust) =* OFF) ;
* i nl r = * on;
r et ur n;

el se;
st ep = st ep + 1;

endi f ;

when st ep = 1;
i f (ORDER_l oadHeader (Or der : Cust) = * OFF) ;

myVi ew_set Er r or (Or der _Er r or ()) ;
st ep = st ep - 1;

el se;
st ep = st ep + 1;

endi f ;

when st ep = 2;
i f (myVI EW_edi t Header () = * OFF) ;

myVi ew_set Er r or (Or der _Er r or ()) ;
st ep = 0;

el se;
st ep = st ep + 1;

endi f ;

I typically write my 5250
controller so that it can go
forward or backward by
adding/subtracting froma
"step" variable.

From a View routine, F12 might
cause it to go back a step.

From a Model routine, an error
might cause it to go back to the
last screen.

26

Controller Notes

• Usually the shortest piece of the application (shorter than the model or view)

• only controls the flow of the application.

• calls the model and view routines and passes the data between them.

• Called the "glue" that holds the program together.

• Theoretically you can replace only the view module and you'll have the same
application with a different user interface (such as converting green screen front-end
to a Windows GUI front-end)

• However, it's been my experience that any time the view changes, the controller has
to change as well, since the flow of the program is so closely tied to the user's input.

• Consequently, I frequently "cheat" and put the controller and view together into a
single object. I'll write a *PGM object for the controller and view, and it'll call a
*SRVPGM application for the model.

27

The View (User Interface)

Notes about a view module for 5250 (green screen) displays.

There's more than just DDS to the view – there's RPG code, too!

All of the logic that relates to the user interface, broken into procedures.

Includes
• DDS for display file
• Code that runs EXFMT, etc.
• Handling of function keys, page up, page down, etc.
• Loading, reading, etc of subfiles.
• Separate procedure to display each screen. (as needed)
• Separate procedures to clear/load subfiles (as needed)
• Separate procedures to print to print files (as needed)

28

Sample View Procedure

FACMEORDS CF E WORKSTN I NDDS(DspFunc)

D DspFunc ds qual i f i ed
D Ex i t 1n over l ay(DspFunc: 03)
D Cancel 1n over l ay(DspFunc: 12)

.

.

.
P VI EW_get Or der B
D VI EW_get Or der PI 1N
D Or der 10a
D Cust 8a

/ f r ee

exf mt ORDENTS1;
scEr r Msg = * Bl anks;

i f (dspFunc. Ex i t) ;
r et ur n * OFF;

endi f ;

Or der = scOr der ;
Cust = scCust ;
r et ur n * ON;

/ end- f r ee
P E

Routines in the view typically take parameters that
get moved to/from a screen or print file – handling
one screen at a time.

Then they display the screen and handle keys (all
stuff you already know how to do.)

In this case, I return *OFF when the user presses the
exit key (F3) or *ON otherwise.

01/ 01/ 08 Or der Ent r y

Or der : 61435

Cust omer : 12345

F3=Exi t

29

Combined View & Controller

I have discovered that any time the view changes, the controller usually changes as
well. Consequently, I often put the view and controller in the same module.

• One less source member to maintain.
• I can call my "model" routines directly from the view procedures, which is a little

more like the "old pattern".

In that scenario:
• Main procedure ("mainline") of my program has the controller logic
• Separate subprocedure for each screen.
• The screen subprocedures will call routines from the model directly to do

validations, retrieve stuff (like the getPrice example), descriptions that go with item
numbers, etc.

30

Sample Combined View/Controller

/ f r ee
dou scMsg = * bl anks

exf mt ADDI TEMS2;
scMsg = * bl anks;

/ / handl e F12 her e…

i f (scPr i ce = 0) ;
scPr i ce = ORDER_get Pr i ce(scCust : sc I t em) ;
i f (scPr i ce = - 1) ;

scMsg = ORDER_er r or () ;
endi f ;

el se;
i f (ORDER_checkPr i ce(scCust : sc I t em: scPr i ce) = * OFF) ;

scMsg = ORDER_er r or () ;
endi f ;

endi f ;

enddo;

01/ 01/ 08 Add I t em t o Or der

Or der : 61435

Cust omer : 12345

I t em: 54321

Qt y: ___________

Pr i ce: _______________

F12=Cancel

In this example, I'm calling the
routines in the model directly from
the view. (Some would say you
shouldn't do that…)

Now all programs can
call these same routines
– only one place to
change them.

The underlying routines
can change any way I
want them to, as long as
the parameters stay the
same, none of the callers
have to change.

31

Get the Idea?

I hope you get the idea for the 5250 view. I didn't want to spend too much time on it,
since I figure you already understand the idea, since most of the code is stuff you've
done before.

If you're still unsure, please download the complete sample applications from the
articles I've written, and walk through the code… you should find it easy enough to
follow.

It's important to understand that the "view" isn't purely for 5250 screens. Any
interface that gets the needed input/output can be considered a "view".
Consider these ideas:

• A web interface – providing a much more modern user interface.
• A batch program – instead of an interactive user, read the input from a file – like a

"script" (similar to what you do when you do batch FTP?)
• Or perhaps data from an EDI document
• Printer output is also "user interface".
• SQL stored procedures or Web Services can provide a "view" that's running on a

program on a completely different computer.

32

CGIDEV2 as a Controller/View

A native ILE web tool such as raw CGI, CGIDEV2, eRPG SDK, CGILIB, etc, can be
used to run our business logic with no changes. Since this is an ILE language, it can
call the subprocedures directly.

Considerations:
• Web applications are always stateless.
• Stateless calls make the controller work completely differently.
• Use an "action" variable passed from the browser to keep track of which step of

your application needs to be performed next.
• As long as your model is stateless – or stateless with the request scope (such as

my error handling) – it will work nicely as a web application

Unfortunately, a sample web application is too much to fit into this presentation. But,
see Paul Tuohy's article "Pattern Recognition: Adopting the Pattern" (System iNEWS
magazine) for a detailed description and complete sample code.
(There's a link at the end of this presentation.)

33

More about Encapsulation

Encapsulation is a very important concept for writing re-usable code, and is perhaps
the single most important concept in reducing maintenance and improving agility.

Encapsulation is almost entirely based on writing a strict, well-defined interface
(prototype and PI) and making sure that it's the only communication between your
model and it's caller. (the controller or combined controller/view)

P ORDER_checkPr i ce. . .
P B EXPORT
D ORDER_checkPr i ce. . .
D PI 1N
D Cust No 8a const
D I t emNo 10a const
D Pr i ce 9p 2 const

Only use EXPORT when a routine MUST be called from outside your service program.
• Greatly reduces the analisys required when you want to change the interface.

Always use CONST or VALUE if a parameter is input-only.
• More self-documenting ("this parameter is clearly input-only")
• Greatly reduces analysis of callers if something changes
• Greatly reduces the code you have to review if a bug is found in production.
• Makes the code easier to re-use!!

34

Binder Langauge Considerations

• Binder language exports from the SERVICE PROGRAM, whereas the EXPORT
keyword exports from the MODULE.

• MODULE exports can be shared by routines that are bound-by-copy (direct binding),
but if they're not in the binder language, they can't be called from external programs.

• This provides better encapsulation when you have multiple modules – you can limit
procedure calls to be only within that service program!

• ILE binds procedures by NUMBER – always add new procedures to the END.

• To keep service program maintenance to a minimum – make changes backward-
compatible.

• Always add new procedures to the end.

• Signatures don't protect against parameter issues (unless you MAKE them)

• Only change parameters in a compatible way.

• Provide wrappers or "compatibility" procedures when necessary.

35

Utilize Binder Language

STRPGMEXP SI GNATURE(' ORDERR4 ver 1. 00')
EXPORT SYMBOL(ORDER_new) #1
EXPORT SYMBOL(ORDER_l oadHeader) #2
EXPORT SYMBOL(ORDER_l oadI t ems) #3
EXPORT SYMBOL(ORDER_saveHeader) #4
EXPORT SYMBOL(ORDER_saveI t em) #5
EXPORT SYMBOL(ORDER_checkI t em) #6
EXPORT SYMBOL(ORDER_checkPr i ce) #7
EXPORT SYMBOL(ORDER_checkQuant i t y) #8
EXPORT SYMBOL(ORDER_er r or) #9

ENDPGMEXP

• Always use a hard-coded signature.

• EXPORT(*ALL) requires re-binding with every change to the export list, which
can discourage programmers from using small, re-usable routines.

• Using *CURRENT and *PRV (with SIGNATURE(*GEN)) does not provide any
additional protection, but makes maintenance more cumbersome.

• You can still force a signature mismatch by changing the version number, in the
(very unusual) situations where you need to do that!

• Think about the things you'll do to exports and how easy this makes them:

Add (very common), Change (very common), rename (unusual), remove (unusual)

36

Binding Directory Considerations
(do not confuse BNDDIR with binder language)

Using binding directories correctly greatly simplifies maintenance
• If you write software for in-house use, use a single BNDDIR for all *SRVPGMs
• If you work for a software house, use a single BNDDIR for each product you sell.

For example, where I work (an in-house shop), I have a binding directory called MAIN
that's always in my library list.

• We add every service program to the binding directory (Model or otherwise)
• Since we use "name spaces" (prefixes) for all exported routines, they never collide.
• The system sorts out which service program to use, and where to find it.
• All I need to code is the /COPY to get the prototypes.

H BNDDI R(' MAI N' : ' QC2LE')
H OPTI ON(* SRCSTMT: * NODEBUGI O)

/ i f def i ned(* CRTBNDRPG)
H DFTACTGRP(* NO) ACTGRP(' KLEMENT')

/ endi f

/ copy ORDER_H
/ copy CUST_H
/ copy DATEUTI L_H

37

Compiling / Binding

Because the same binding directory is always used, and it's specified in the H-spec,
the commands to compile and bind are very easy.

Other considerations:
• Don't use the binding directory for modules – that only seems to confuse things.

(If modules are named according to my spec, it's easy enough to bind them.)
(Any module called from multiple locations should be put in a SRVPGM!)

• Activation group
• Service programs should always use *CALLER
• Programs should use *NEW if called directly from a menu, and you want

all files to close when the user returns to the menu.
• Programs should otherwise use ACTGRP('MYNAME') where MYNAME is

a standard name you've decided on for your company.
• My company (Klement Sausage Co) uses ACTGRP('KLEMENT')
• Don't use QILE, too many other people use that, and you might conflict.
• Don't use *CALLER for a program – causes problems with RCLRSC
• Don't use (or rarely use) *NEW for web apps, hurts performance too much.

• PDM options 14 and 15 work nicely – as does WDSC/RDi compile commands, but
you have to do the CRTSRVPGM at the command line.

38

Sample Compile/Bind Commands

CRTRPGMOD MODULE(ORDERR4) DBGVI EW(* LI ST)
CRTSRVPGM SRVPGM(ORDERR4)
ADDBNDDI RE BNDDI R(MAI N) OBJ((ORDERR4 * SRVPGM))

CRTSQLRPGI OBJ(ORDERR4) OBJTYPE(* MODULE) DBGVI EW(* SOURCE)
CRTSRVPGM SRVPGM(ORDERR4)
ADDBNDDI RE BNDDI R(MAI N) OBJ((ORDERR4 * SRVPGM))

CRTRPGMOD MODULE(ORDERR4) DBGVI EW(* LI ST)
CRTRPGMOD MODULE(ORDER2R4) DBGVI EW(* LI ST)
CRTRPGMOD MODULE(ORDER3R4) DBGVI EW(* LI ST)
CRTSRVPGM SRVPGM(ORDERR4) MODULE(ORDER*)
ADDBNDDI RE BNDDI R(MAI N) OBJ((ORDERR4 * SRVPGM))

CRTBNDRPG PGM(ORDVI EWR4) DBGVI EW(* LI ST)

Compile the model (a single-module service program – most common for models):

If it uses SQL (including result sets for stored procedure wrappers):

When it uses multiple modules (substitute CRTSQLRPGI if it uses SQL)

Compile a combined controller/view that calls the model:

39

Scott's BUILD Tool

I've written a tool that lets you put the various steps required to compile a program in
comments at the top of your program. The tool is designed to work nicely from all of
the environments:

• Command-line
• PDM
• WDSC

It automates the entire process, including the CRTSRVPGM and adding to the binding
directory.

See the "More Information" links for a link to the article where you can learn more and
download the code.

(Requires System iNetwork Pro membership – but no additional costs…)

40

Reusing the Model from Non-ILE Apps

As ILE objects, service programs can only be called from other ILE code, right?
Wrong. Here are a few ways that you can call a service program from a non-ILE
language:

• Web Services
• External Stored Procedures (SQL)

Stored procedures are callable from just about anywhere:
• .NET, ASP, Java, PHP, NET.DATA, Visual Basic, C/C++, even Microsoft Office!
• Can be on the same machine, or different machine (via ODBC or JDBC)

I always write a separate ILE sub procedure to be called from the stored procedure –
never call the "regular" ILE procedure directly. This stored procedure interface will call
the "regular" routine, but will do some massaging of the data. (I call this a "wrapper")

Why use a wrapper?
• Result sets for output parms (Meta data for returned variables)
• Enables ILE to call directly
• Enables a façade over the error handling

41

Sample Stored Procedure Wrapper

P ORDER_checkPr i ce_sp. . .
P B expor t
D ORDER_checkPr i ce_sp. . .
D PI
D Cust No 8a const
D I t emNo 10a const
D Pr i ce 9p 2 const

D Resul t 7 ds qual i f i ed occur s (1)
D MsgI d 10i 0 i nz
D Msg 80a var yi ng i nz

/ f r ee
%occur (Resul t 7) = 1;
i f (Or der _CheckPr i ce(Cust No: I t emNo: Pr i ce) = * OFF) ;

Resul t 7. Msg = ORDER_er r or (Resul t 7. MsgI D) ;
endi f ;

/ end- f r ee
C/ exec SQL set Resul t set s Ar r ay : Resul t 7 f or 1 Rows
C/ end- exec
P E

The information in this
DS (field names, sizes,

data types) will be
communicated as
"meta data" in the

result set. Callers can
use that information

Calls the "regular"
routine and the error
message routine – so

there's no duplication of
code – still just one

place to change rules.

Returns the output data
to SQL as a result set.

Input data comes from
SQL as parameters.

42

Calling the Stored Procedures

To define the stored procedure to SQL so that SQL statements can use it, and it knows where to
find the service program, etc, run the create procedure statement like this (one-time):

CREATE PROCEDURE ORDER_CHECKPRI CE(
I N Cust No CHAR(10) ,
I N I t emNo CHAR(8) ,
I N Pr i ce DECI MAL(9, 2)

)
LANGUAGE RPGLE
NOT DETERMI NI STI C
CONTAI NS SQL
EXTERNAL NAME ' SCOTTLI B/ ORDERR4(ORDER_CHECKPRI CE_SP) '
PARAMETER STYLE GENERAL;

Now the procedure can be called from an SQL statement like this one:

CALL ORDER_CHECKPRI CE(' 12345' , ' 54321' , 19. 27) ;

' Cust omer not f ound'1101
MSG – VARCHAR(80)MSGI D – I NTEGER

A result set might look like this:

43

More Information

In System iNetwork Programming Tips newsletter:

Feb 14, 2008 issue, "Writing Reusable Service Programs" (Associate Membership)
http://systeminetwork.com/article/writing-reusable-service-programs

Jan 24, 2008 issue, "A General Purpose BUILD Tool" (Pro Membership)
http://systeminetwork.com/article/general-purpose-build-tool

In System iNEWS magazine (ProVIP membership, or print copy):

Feb 2007 issue, "Pattern Recognition Eases Modern RPG Programming"
http://systeminetwork.com/article/pattern-recognition-ease-modern-rpg-programming

Paul Tuohy, October 2007 issue: "Pattern Recognition: Adopting the Pattern"
http://systeminetwork.com/article/pattern-recognition-adopting-pattern

Paul Tuohy, Feb 2007 issue, "Considerations for a Successful ILE Implementation"
http://systeminetwork.com/article/considerations-successful-ile-implementation

44

This Presentation

You can download a PDF copy of this presentation from:

http://www.scottklement.com/presentations/

Thank you!

