
Web Services and XML for RPGers

Presented by

Scott Klement
http://www.scottklement.com

© 2011-2012, Scott Klement

"A computer once beat me at chess, but it was no match
for me at kick boxing." — Emo Philips

COMMON PID 570176
(Saturday Workshop, Monorail C)

2

Our Agenda

1. XML Terminology and Basics

2. How to Write XML from RPG

3. How to Read XML with RPG's XML Opcodes

4. Web Services Terminology and Basics

5. How to Provide RPG-based Web Services

6. How to Call Web Services from RPG
(with HTTPAPI)

This workshop consists of six parts:

3

What is XML?

XML stands for
• eXtensible Markup Language
• A "markup language" is for labelling data

• like "markings" on the outside of a box to tell what's inside
• in this case, however, the markings are inside the data.

It's extensible because you
can make up your own tags,
as needed.

You can add additional tags
later, without breaking
compatibility.

4

XML Does Not Do Anything

XML does not do anything.
• Although "language" is part of the name, it is not a
programming language like RPG.

• It is only a format for storing/retrieving data

• It looks similar to HTML

• It is designed to carry data, not display it.

• XML tags are not "predefined" like HTML

• You invent your own XML tags.
• or use the ones prescribed by someone else.

• A language for creating other languages

5

Usually Used for Data Interchange

Imagine you had to send a list of orders to a business partner.
Why not use a physical file for this?

• Multiple files required
• one containing one record per order (for "header-level" data)
• one containing one record per item/service on the order
• possibly more (multiple ship-tos? multiple discounts? etc.)

• All computer systems and databases use different formats
• Data description (field layouts) must be sent separately.
• Instructions for how the files correlate must be sent separately.
• If you add more information later, all business partners must

change their applications or compatibility is broken.

EDI? Data synchronization? Mailing list exchanges? Employee
information for a benefit plan?
Any data that you need to exchange between organizations.

6

The XML Solution

•You present your data with "tags" that identify what it is.
• No need for a separate description

•Any sort of data can be represented
• No worries about multiple documents to contain all of the data

•You can add new tags without breaking compatibility.
• Exising applications will just ignore new data until updated.

•All modern programming languages have XML reading capability
• Java, .NET, PHP, JavaScript, RPG, Cobol, C/C++, etc.
• … sometimes an add-on software package is required.

To better understand how this is accomplished, let's look at the
syntax of an XML document.

7

XML Elements and Attributes

Elements
• An XML opening tag and closing tag.
• Optionally with character data in between.

<company> Acme Widgets, Inc </company>
(opening) char data (closing)

• Elements can be nested (see next slide)

Attributes
• Looks like a variable assignment

<company name="Acme Widgets, Inc"> </company>

• Opening/Closing Can Be Combined (a "shortcut")
<company name="Acme Widgets, Inc" />

• Possible to have multiple attributes and character data
<company custno="1234" type="remit">Acme Widgets, Inc</company>

8

Simple XML Example

<Customer id="56071" type="retail">
<name>Bountiful Grocery, Inc.</name>
<contact>Joseph Bachmann</contact>
<address>

<street>535 N Wabash Ave</street>
<city>Chicago</city>
<state>IL</state>
<postal>60611</postal>

</address>
</Customer>

• Customer is an element with an opening and closing tag
• The <Customer> opening tag has attributes of id and type

• <name> is within the start/end of <Customer> .
• <street> is within address, which in turn, is within <Customer>

9

Elements and Tags

• All XML elements must have a closing tag
• In HTML or SGML, some tags do not have to be closed.
• In XML, they always do.

<Customer> must have a corresponding </Customer>

But: <Customer /> is the same as <Customer></Customer>

• XML tags are CaSe SenSitiVe
• Valid: <street>123 Main St.</street>

• Invalid: <Street>123 Main St.</street>

• XML elements may contain nested XML elements (but must be properly
nested)

• Valid:
<address><street>123 Main St.</street></address>

• Invalid:
<address><street>123 Main St.</address></street>

10

Attributes

<address usage="BillTo">

• Attributes are intended to:
• Clarify or qualify the meaning of a tag
• …but the distinction is often unclear/blurry.
• …and there are no official rules about when to use an attribute vs. a

nested element.
• Attributes must be quoted. (Either single or double quotes can be used.)

• Attributes cannot contain any nested elements
• Attributes cannot contain multiple values or lists.
• When double quotes are used, single quotes can be data. Or vice-versa.

<note subject="You're Crazy!">

<actor name='George "Spanky" McFarland'>

11

Which Do You Like Better?

<message date="04-10-2011">
Hello there! Nice day, isn't it?

</message>

<message>
<date>04-10-2011</date>
Hello there! Nice day, isn't it?

</message>

<message>
<date>

<month>04</month>
<day>10</day>
<year>2011</year>

</date>
Hello there! Nice day, isn't it?

</message>

12

XML Documents

<document name="customers">
<customer id="1001" />
<customer id="1002" />

</document>

• Must have a root element (element that encloses the entire document)
VALID: NOT VALID:

<customer id="1001" />
<customer id="1002" />

• Are not organized into "records".
• Line feeds are optional

<document name="customers"><customer id="1001" /></ document>

• May be megabytes or gigabytes long. (without linefeeds!)
• Are usually encoded in Unicode. Or sometimes ASCII. Rarely EBCDIC.

13

A More Real-World Example

<orderList>
<order number="12345">

<date type="order">2011-04-10</date>
<date type="ship">2011-05-07</date>
<Customer id="56071" type="retail">

<name>Bountiful Grocery, Inc.</name>
<contact>Joseph Bachmann</contact>
<address type="shipto"><street>535 N Wabash Ave</st reet>

<city>Chicago</city><state>IL</state><postal>60611< /postal>
</address>

</Customer>
<itemList>

<item gtin="007360804430">
<name>Italian Sausage</name>
<ordered qty="150" unit="case"/>

</item>
<item gtin="007360801790">

<name>Olive Loaf</name>
<ordered qty="75" unit="loaf"/>

</item>
</itemList>

</order>
<order> More Orders Can be Here! </order>

</orderList>

It's okay for the same
element name to be used

more than once.

More than one element on
a line is allowed and very

common place.

Elements may be repeated
to form a "list" (or "array")

14

Processing Directives

<?xml version="1.0" encoding="utf-8"?>
<orderList>

<order number="12345">
... etc ...

</order>
</orderList>

• have question marks like <? and ?> to disguish them from normal tags

• never have a closing tag
• provide hints to XML parsers to help them understand the document

• this document uses version 1.0 of the XML specification
• this document is not in EBCDIC or ASCII, but rather UTF-8 Unicode

• are not part of the data of your program
• XML parsers typically do not return processing information to the

programs that call them. (Or when they do, it's provided separately.)

15

Special Characters

• Almost any character may be used in an XML document
• This includes international characters (especially if a Unicode encoding

was chosen.)
• The only characters that are strictly forbidden are:

• < because it starts a new tag

• & because it starts a new entity reference

• But it's a good idea to also escape these

• " especially when used inside an attribute

• ' especially when used inside an attribute

• > because it ends a tag.

<note>If Calories < 100 Then</note>

This will confuse an XML
parser. It will expect a new

tag to start here.

16

Entity References

An Entity Reference lets you 'escape' special characters in XML. There are
5 entities that are predefined in every XML parser:

• < refers to the < character
• > refers to the > character
• & refers to the & character
• " refers to the " character
• ' refers to the ' character

NOTE: It's also possible to define your own entities -- but this is rarely done in XML,
so I will not cover it here.

<note>If Calories < 100 Then</note>

<actor name="George " Spanky " McFarland">

17

Comments in XML

It's possible to put comments in an XML document (much like you would in
RPG source code.)

<my_document>
<!-- This is a comment. -->
<data> some data here </data>

</my_document>

Comments always start with <!--

Comments always end with -->

18

CDATA (and PCDATA)
The data in-between XML tags is considered the "character data"

<my_tag> ...Character Data ... </my_tag>

There are two types of character data allowed in XML:
• PCDATA = Parsed Character Data (default), the data is pars ed looking for other XML

tags, attributes and entities.
• CDATA = Character data. The data does not contain any XM L tags, attributes or entities.

CDATA is particularly useful when your data contains a lot of special symbols (such as < or &
characters.) This is especially true of program code.

<code language="clle">
<![CDATA[

DCL VAR(&USERID) TYPE(*CHAR) LEN(10)
RTVJOBA CURUSER(&USERID)

]]>
</code>

No need to escape the
& characters because

they're in a CDATA
block

The only sequence of characters not allowed in CDATA is]]> since it
denotes the end of the CDATA.

19

Well Formed

An XML document is said to be well formed when it follows basic
XML syntax rules.
• all elements are within a root element.
• all elements have a closing tag
• all tags are case-sensitive
• all elements are properly nested
• all element values are properly quoted
• all special characters in the data are converted to entity references

That’s not the same thing as being a valid document. When you (or
someone you do business with) designs their own document layout,
it may have additional rules.
• certain elements may be required?
• elements/attributes might have to be in a certain order?
• data might have to be in a certain format?

20

Line Breaks Optional

The XML standard does not require your document to be laid and
formatted nicely. It’s very common for XML documents to have no
line breaks at all. All of the tags appear on a single line!

<?xml version="1.0" encoding="utf-8" standalone="ye s"?>
<Customer id="56071" type="retail"><name>Bountiful Grocery,
Inc.</name><contact>Joseph Bachmann</contact><addre ss>
<street>535 N Wabash Ave</street><city>Chicago</cit y>
<state>IL</state><postal>60611</postal></address></ Customer>

This is still considered well-formed! And it may even be considered
“valid”!

21

Example of Not Well Formed

Q: When your RPG program outputs XML, you might make a
mistake in your code. How do you test to see if your document is
well-formed?

<Customer id="56071" type="retail">
<name>Bountiful Grocery, Inc.</name>
<contact>Joseph Bachmann</contact>
<address>

<street>535 N Wabash Ave</street>
<city>Chicago</city>
<state>IL</state>
<postal>60611</postal>

</address>
</customer>

Not well formed because
<Customer> does not
match </customer>

22

Interactive Test with Browser

A: Open your XML with a browser (Firefox, Internet Explorer,
Chrome, Safari) and it’ll tell you if it’s well-formed or not.

23

Browsers Make It Readable

Side Note: When you have a document with no line breaks, a
browser also helps make it easy to read.

<?xml version="1.0" encoding="utf-8" standalone="yes"?><Customer id="56071"
type="retail"><name>Bountiful Grocery, Inc.</name><contact>Joseph Bachmann
</contact><address><street>535 N Wabash Ave</street><city>Chicago</city><state>
IL</state><postal>60611</postal></address></Customer>

24

Programmatic Test With Parser

monitor;
xml-sax %handler(checkDoc : errorCode)

%XML('simple_notwellformed.xml'
: 'doc=file');

on-error 351;
// RNQ0351: The XML parser detected error code &1.
// not well-formed! ‘errorCode’ contains the error code.

endmon;

P checkDoc B
D PI 10i 0
D errorCode 10i 0
D event 10i 0 value
D string * value
D stringLen 20i 0 value
D exceptionId 10i 0 value

/free
if event = *XML_EXCEPTION;

errorCode = exceptionId;
return 1;

endif;
return 0;

/end-free
P E

If you want to check if a
document is well formed within
a progam, you can simply run it
through the parser.

XML standards say that an XML
parser must return an error if a
document is not well-formed.

RPG’s XML-SAX opcode sends
you an exception ID via it’s
handler.

25

Name Spaces

Since you can make up any XML tags you want/need for your
document, how do you avoid naming conflicts?

Suppose you wanted to mix your XML document with one created
by someone else. But, you don't want duplicated names?

<Customer>
<name>John Q Public</name>

</Customer>

<Product>
<name>Bratwurst</name>

</Product>

<Order>
<Customer> <name>John Q Public </name> </Customer>
<productList>

<Product> <name>Bratwurst </name> </Product>
<Product> <name>Kielbasa </name> </Product>

</productList>
</Order>

26

Prefixes Make it Unique

Suppose you added a prefix for each document.
• c = from the Customer document

• p = from the Product document

<Order>
<c:Customer> <c:name> John Q Public </c:name> </c:Customer>
<p:productList>

<p:Product> <p:name> Bratwurst </p:name> </p:Product>
<p:Product> <p:name> Kielbasa </p:name> </p:Product>

</p:productList>
</Order>

<c:name> is clearly the customer name.

<p:name> is clearly the product name.

These prefixes are called name spaces.

27

Globally Unique

Most XML documents that use name spaces strive to make them
globally unique.

Remember: Anyone in the world can create his/her own XML tags.
How can you guarantee that something is identified uniquely?

How would you do it?

• make people register their XML elements and name spaces?
• allow only licensed operators to create XML tags? Use their license

number as a prefix?

These sort of defeat the purpose of letting people create their own tags,
don’t they?

How would you keep them unique?

28

Use a URL as a Prefix

The standard allows you to use a URL as a name space.
• Anyone can register a domain name (e.g. scottklement.com)
• But only one person or organization can own a particular name
• Most organizations already own one.
• The remainder of the URL (besides the domain name) can allow multiple

name spaces to be offered by a single company.

<Order xmlns:c="http://systeminetwork.com/ns/customer"
xmlns:p="http://scottklement.com/xml/productNs" >

<c:Customer><c:name>John Q Public</c:name></c:Custo mer>
<p:productList>

<p:Product><p:name>Bratwurst</p:name></p:Product>
<p:Product><p:name>Kielbasa</p:name></p:Product>

</p:productList>

</Order>

29

The XMLNS Attribute

The xmlns attribute is a reserved word for XML Name Space. It
lets you specify a prefix and a URL.
• The URL is only for uniqueness! Nothing is fetched over the network or

Internet for the URL.
• Does not have to point to a real document on a real web server.
• But, many think it's a good idea to have the URL link to the document's

schema (XSD) file. (I'll explain schemas soon!)

<Order xmlns:c="http://systeminetwork.com/ns/customer"
xmlns:p="http://scottklement.com/xml/productNs" >

... Because xmlns is specified on the 'Order' elemen t, the c: and p: namespaces
are only valid between <Order> and </Order> (but can be used for the
order tag itself) …

</Order>

30

Default and Duplicated XMLNS

• When xmlns is specified without a prefix, it's the default namespace within
that tag.

• It's possible (but confusing and not recommended) to have more than one way
of referring to the same name space.

<Order xmlns="http://scottklement.com/xmldemo/xmldemo/orde r"
xmlns:cust="http://systeminetwork.com/ns/customer"
xmlns:prod="http://scottklement.com/xmldemo/order" >

<cust:Customer> customer data here </cust:Customer>
<date>2011-04-11</date>

<productList>
<prod:Product> product data here </prod:Product>
<Product> More here </Product>

</productList>
</Order>

Order, date, productList and Product (both of them) all use the same
name space. prod:Product and Product should be considered the same.
But, Customer uses a different name space.

31

XML Schema Documents

XML is a “markup language for creating new markup languages”

When you’ve designed your own language, or have to conform to
someone else’s, how can you test that your document is not only
well-formed, but also valid?

• to be valid, a document must also be well-formed.
• it must also conform to the rules dictated by the document creator

• which elements are allowed?
• which elements are manditory?
• how many times can a loop repeat?
• in what sequence do the elements/attributes need to appear?

– or, doesn’t it matter?

XML rules can be described with DTD (old, deprecated) or XSD documents
(Due to time constraints, I will only give a quick primer for XSD in this talk.)

32

XML Schema Documents

XML is a “markup language for creating new markup languages”

When you’ve designed your own language, or have to conform to
someone else’s, how can you test that your document is not only
well-formed, but also valid?

• to be valid, a document must also be well-formed.
• it must also conform to the rules dictated by the document creator

• which elements are allowed?
• which elements are manditory?
• how many times can a loop repeat?
• in what sequence do the elements/attributes need to appear?

– or, doesn’t it matter?

XML rules can be described with DTD (old, deprecated) or XSD documents
(Due to time constraints, I will only give a quick primer for XSD in this talk.)

33

XSD Example

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchem a">

<xs:element name="Customer">
<xs:complexType>

<xs:all>
<xs:element name="name" type="xs:string"/>
<xs:element name="contact" type="xs:string"/>
<xs:element name="address">

<xs:complexType>
<xs:sequence>

<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="postal" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:all>
<xs:attribute name="id" type="xs:string"

use="required"/>
<xs:attribute name="type" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:schema>

An XSD is an XML
document.

It lists which
elements and attrs
are allowed within
an XML document.

The xs: prefix is a
namespace.

<xs:all> allows the
elements in any
order

<xs:sequence>
requires the
elements to be in a
particular order.

34

Other Advanced XML Terms

• XSL = eXtensible Stylesheet Language = tells a browser how to display
your XML document. (Similar to CSS in HTML.)

• XSLT = XSL for transformations.
• XSL-FO = XSL formatting into objects

• XPath = path of elements needed to reach a target

Example: /Customer/address/city

• SAX = Simple API for XML
A type of XML parser that walks through your document, one

element at a time.

• DOM = Document Object Model
The opposite of SAX. Loads entire document into memory. You

navigate by refering to parent, child and sibling nodes.

35

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

Thank you!

Writing XML from RPG

Presented by

Scott Klement
http://www.scottklement.com

© 2011-2012, Scott Klement

Apprentice: “Master, what is fate?”

Mentor: “It is that which brings medicine to the sick. Food to the
hungry. Materials to those who would build.”

Apprentice: “Thank you, master. So that is fate?”

Mentor: “Fate? Oh, I thought you said ‘freight’!”

37

Tools for Writing XML

• RPG currently provides opcodes XML-SAX and XML-INTO for reading
XML. It provides nothing for writing XML

• Cobol has support for writing XML, but it's very limited.
–Maybe good enough if you decide on the XML format.
–Useless when trying to conform to an existing standard.
–No support for name spaces, schemas or even attributes!

• IBM's XML Toolkit supports writing, via the DOM parser.
–Very difficult to use.
–Documentation is terrible
–But, does support attributes, name spaces and schemas!

• Third party tools

• Do it yourself. (My recommendation for most circumstances!)

38

Complexity of XML

Think about the things that make XML complicated
• maybe multiple elements on a single source record (or maybe not)
• no line breaks in the document (single "record" could be megabytes long -

- or maybe not.)
• need to understand name spaces
• document might be in an unexpected character set (or "encoding")

<?xml version="1.0" encoding="utf-8" standalone="ye s"?><Customer
id="56071" type="retail"><name>Bountiful Grocery, I nc.</name><contact>
Joseph Bachmann</contact><address><street>535 N Wab ash Ave</street>
<city>Chicago</city><state>IL</state><postal>60611< /postal></address>
</Customer>

Think about when these issues might cause problems:
• when reading a document sent by a 3rd-party? YES!
• when writing an XML document to send out? NO!

39

A Problem of Maybes

If you look at the issues on the last slide, you notice a pattern.

• they only cause problems some of the time.

• they are only a problem when you can't control how the document
has been written.

• when you receive an XML document from a 3rd party, you can't
control how they format it. As long as they follow the XML
standard, they are doing their part.

• when you generate the XML, you have complete control over these
issues. You can format it as you wish.

• therefore, writing XML is several orders of magnitude easier than
reading it.

40

A PF Example (1 of 5)

FCUSTFILE IF E K DISK
FXMLDOC O A F 1000 DISK

D Rec ds 1000

/free
exsr WriteHdr ;

setll *start CUSTFILE;
read CUSTFILE;
dow not %eof(CUSTFILE);

exsr WriteXml ;
read CUSTFILE;

enddo;

exsr WriteFtr ;
*inlr = *on;

CRTPF FILE(XMLDOC) RCDLEN(1000)

It’s not too hard to
write data in XML
format.

This example writes
XML to a physical
file (“flat file”)
named XMLDOC.

I’ll talk about the
problems with this
code afterwards.

41

A PF Example (2 of 5)

begsr WriteHdr;
rec = '<?xml version="1.0" encoding="utf-8"?>';
write XMLDOC rec;
rec = '<CustList>';
write XMLDOC rec;

endsr;

begsr WriteFtr;
rec = '</CustList>';
write XMLDOC rec;

endsr;

begsr WriteXml;
rec= '<Customer id="' + %char(CustNo) + '">+

<name>' + escape(Name) + '</name>+
<contact>' + escape(Contact) + '</contact>+
<address>+

<street>'+ escape(street) + '</street>+
<city>' + escape(city) + '</city>+
<state>' + escape(state) + '</state>+
<postal>'+ escape(postal) + '</postal>+

</address>+
</Customer>';

write XMLDOC rec;
endsr;

This writes the
entire customer
to the file with
no line breaks –
that’s okay,
since line breaks
aren’t required in
XML.

42

A PF Example (3 of 5)

P escape B
D PI 300a varying
D input 100a varying const options(*trim)

D output s 300a varying inz('')
D x s 10i 0
D ch s 1a

/free
for x = 1 to %len(input);

ch = %subst(input:x:1);
select;
when ch = '<';

output += '<';
when ch = '>';

output += '>';
when ch = '&';

output += '&';
when ch = '"';

output += '"';
when ch = '''';

output += ''';
other;

output += ch;
endsl;

endfor;
return output;

/end-free
P E

This takes care of any
special characters in the
alphanumeric fields from the
CUSTLIST file.

43

A PF Example (4 of 5)

44

A PF Example (5 of 5)

CPYTOSTMF FROMMBR('/qsys.lib/mylib.lib/xmldoc.file/ xmldoc.mbr')
TOSTMF('/tmp/customerList.xml')
STMFOPT(*ADD) STMFCODPAG(1208) ENDLINFMT(*LF)

Ultimately, the IFS data should be put in the IFS in a stream file. (It
shouldn’t be kept in a physical file.)

• the data is supposed to be UTF-8 Unicode, not EBCDIC

• flat files have fixed-length records, padded with blanks, this makes
the files much larger, and therefore less efficient for data
interchange.

• XML tools will expect the data to be in the IFS.

It’s no problem to convert it, however. (Note: CCSID 1208 is UTF-8)

45

Using the IFS APIs

The PF example meant writing to one file then copying to another. That’s
twice as much work for the computer – and slower performance.

Why not write directly to the IFS? Here’s a very quick summary of how:

/copy IFSIO_H

handle = open(ifs-file-name
: flags
: authorities
: fileccsid
: pgmccsid);

length = writeA(handle : data : length);

close(handle);

IFSIO_H is a copy book available
for free from ScottKlement.com

The open() API creates, configures,
and opens an IFS file.

The writeA() API writes data to an
IFS file. The close() API closes an
open file.

46

An IFS Example (1 of 2)

begsr WriteHdr;
fd = open('/tmp/customerList.xml'

: O_CREAT + O_TRUNC + O_WRONLY + O_INHERITMODE
+ O_CCSID + O_TEXTDATA + O_TEXT_CREAT

: 0: 1208: 0);
if fd = -1;

// open failed, handle error
endif;
rec = '<?xml version="1.0" encoding="utf-8"?>'

+ '<CustList>';
callp writeA(fd: rec: %len(rec));

endsr;

begsr WriteFtr;
rec = '</CustList>';
callp writeA(fd: rec: %len(rec));
callp close(fd);

endsr;

This program is the same as the PF one, except that I added the
/COPY statement, and changed the three subroutines.

47

An IFS Example (2 of 2)

begsr WriteXml;
rec= '<Customer id="' + %char(CustNo) + '">+

<name>' + escape(Name) + '</name>+
<contact>' + escape(Contact)+ '</contact>+
<address>+

<street>'+ escape(street) + '</street>+
<city>' + escape(city) + '</city>+
<state>' + escape(state) + '</state>+
<postal>'+ escape(postal) + '</postal>+

</address>+
</Customer>';

callp writeA(fd: rec: %len(rec));
endsr;

This program is the same as the PF one, except for the three
subroutines. I’ve modified them to use the IFS APIs instead.

Now my XML is written straight to the IFS. No middle-man!

48

Do You Want XML in your RPG?

As your XML documents get more complex, coding the XML tags inside your
RPG code can be a challenge. Many RPG programmers have asked me for
a better solution.

Why not CGIDEV2?
• As you’ve noticed, XML looks a lot like HTML.
• CGIDEV2 is designed for HTML, but works with XML as well.
• WrtHtmlStmf() routine lets you write to the IFS instead of

sending your output via HTTP.

CGIDEV2 provides a very simple way of writing XML from an RPG
application.
• A “template” for the XML is put in an IFS file.
• You divide your template into “sections” or “chunks” to be written at

one time.
• You specify fill-in “variables” that will be populated from your RPG

code.

49

CGIDEV2 Template

/$Header
<?xml version="1.0" encoding="iso-8859-1"?>
<CustList>
/$Customer

<Customer id=" /%CustNo%/ ">
<name>/%Name%/</name>
<contact> /%Contact%/ </contact>
<address>

<street> /%street%/ </street>
<city> /%city%/ </city>
<state> /%state%/ </state>
<postal> /%postal%/ </postal>

</address>
</Customer>

/$Footer
</CustList>

This program is the same as the PF one, except that I added the
/COPY statement, and changed the three subroutines.

At present, CGIDEV2 doesn’t
support Unicode (without
modifying the source.)

So we’ll use ISO-8859-1 (ASCII)
instead.

ISO-8859-1 is CCSID 819.

50

CGIDEV2 RPG Example

FCUSTFILE IF E K DISK
. . .

getHtmlIfsMult('/xmldemo/CustListTemplate.xml');
clrHtmlBuffer();
wrtsection('Header');

setll *start CUSTFILE;
read CUSTFILE;

dow not %eof(CUSTFILE);

updHtmlVar('Custno' : %char(CustNo));
updHtmlVar('Name' : escape(Name));
updHtmlVar('Contact' : escape(Contact));
updHtmlVar('Street' : escape(Street));
updHtmlVar('City' : escape(City));
updHtmlVar('State' : escape(state));
updHtmlVar('Postal' : escape(Postal));
wrtsection('Customer');

read CUSTFILE;
enddo;

wrtsection('Footer');
WrtHtmlToStmf('/tmp/custList_cgidev.xml': 819);

*inlr = *on;
/end-free

getHtmlIfsMult() loads the template
from the last slide.

wrtsection() writes one section
(chunk) of HTML.

updHtmlVar() replaces variable data
with data from this RPG program
(in this example,fields from the
CUSTLIST file.)

51

Writing XML – Final Thoughts

It’s much easier to write than read

Writing to a PF is familiar, and not hard to do
Writing to the IFS might require a learning curve, but performs better and
works better.

CGIDEV2 works better when the XML structure gets complex, because you
don’t have to worry about RPG’s quoting, or blocking up your code with
complicated XML.

None of these options provide schema validation!

• but you will test your code, won’t you?

• run a few samples through a separate schema validator as part of
the testing process.

• is it important to validate every time you write XML?

52

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

The sample code shown in this talk can also be down loaded
from the preceding link.

Thank you!

Reading XML From RPG

Presented by

Scott Klement
http://www.scottklement.com

© 2011-2012, Scott Klement

Type reply (if required), press Enter.
User error. Replace user to continue (C G).

Reply . . : G

54

Tools for Reading XML

• With V5R3, a SAX parser was added to COBOL for parsing XML.

• In V5R4, RPG added two op-codes for XML support
– XML-SAX: Standard SAX XML parser
– XML-INTO: Uses SAX under the covers, but takes care of mapping

the data to your data structure for you.

• IBM's XML Toolkit
– Provides SAX parser
– Provides DOM parser
– Very hard to use – documentation is terrible.

• Expat, open source parser
– HTTPAPI provides a simplified interface to Expat

• Third-party tools.

55

XML as a Data Structure

<address>
<street>123 Sesame St.</street>
<city>New York</city>
<state>NY</state>
<postal>10012</postal>

</address>

To this:

D address ds qualified
D street 30a
D city 20a
D state 2a
D postal 10a

You might think of an XML document as a data structure. Compare this:

They both describe data with the same structure.

56

Path to XML Data

<address>
<street>123 Sesame St.</street>
<city>New York</city>

</address>

To get to "123 Sesame St.":
• go through address / street

To get to "New York"
• go through address / city
• but not through "street". The city tag is "outside" of street.

This is the "path" to the data.

You might think of an XML document as a data structure. Compare this:

Think about how you "get to" the values. Which XML elements are they
stored inside?

57

The Gist of XML-INTO

Think about how you "get to" the values. Which XML elements are they
stored inside?

D my_data ds qualified
D street 30a
D city 20a
D state 2a
D postal 10a

my_doc = '<address>+
<street>123 Sesame St.</street>+
<city>New York</city>+
<state>NY</state>+
<postal>10012</postal>+

</address>';

xml-into my_data
%xml(my_doc: 'path=address case=any');

XML-INTO maps the XML data into the data structure. When this code
completes:

• my_data.street = '123 Sesame St.'
• my_data.city = 'New York'
• my_data.state = 'NY';
• my_data.postal = '10012'

path=address tells XML-INTO
that the sub-elements of the
<address> element should be
mapped to my_data 's subfields.

case=any tells XML-INTO to
ignore upper/lower case when
mapping into RPG field names.

58

XML-INTO Syntax Overview

Opcode extenders:
• E = instead of a halt, turn on %ERRORindicator.

• H = half-adjust if needed when assigning numerics.
(in case there are numeric values in the data structure / receiver)

receiver = variable to map XML data into. Can be a standalone variable, or
(more likely) a data structure.

%XML(xmlDoc : options) = BIF pertaining to the XML document
• xmlDoc identifies either a character string or IFS path of XML document
• options is for options that control how the XML is processed

XML-INTO{(EH)} receiver %XML(xmlDoc {: options });

opts = 'path=address case=any';
xml-into my_data %xml(my_doc : opts);

59

More About %XML BIF

xmlDoc represents an RPG variable
• by default, this is an RPG variable containing the XML data.
• if the doc=file option has been set, xmlDoc represents an IFS path

name to the XML document to read. (RPG will open/read it from the IFS
for you.)

options controls the XML processing
• character string or literal. (can be changed at run-time, if needed.)
• format is keyword=value keyword=value, etc.
• no spaces between keywords and values
• space denotes the end of one keyword, and start of the next.

%XML(xmlDoc {: options });

60

%XML BIF Options (1 of 3)

path = identifies the part of the XML document to process
• in my example, 'address' is the outermost XML element to process
• by default, path is unspecified. In that case, the variable name has to

match the outermost XML element in the document. (if I had named my
data structure 'address', path would be unnecessary.)

doc controls the type of document storage
• doc=string means the XML will be read from a variable (default)
• doc=file means the XML will be read from an IFS path name

case controls the way XML tag names are matched to RPG field names
Note: I always use case=any. And, in my opinion, this option isn't very useful.

• case=lower means lowercase XML tags match RPG names (default)
• case=upper means uppercase XML tags match RPG names
• case=any means that matches are case-insensitive.

61

%XML BIF Options (2 of 3)

trim trims extra blanks, tabs and newlines from the XML data
• trim=all causes tabs, newlines, and blanks to be trimmed from the data.

Not just the leading and trailing ones! They are trimmed from the middle,
too, resulting in just a single blank between words. (default)

• trim=none leaves any blanks, tabs or newlines unchanged.

ccsid lets you override the character set of the document.
• ccsid=best means that RPG will use the file's CCSID if available, or the

job's CCSID if not. (default)
• ccsid=job means that RPG will treat the XML as being in the job's

(EBCDIC) CCSID
• ccsid=ucs2 means that RPG will treat the XML as being in UCS-2

Unicode.
• Note: Frustratingly, RPG doesn't have an option to calculate the CCSID

from the <?xml?> processing directive. It always relies on one of the
three options, above.

62

%XML BIF Options (3 of 3)

allowMissing specifies how RPG reacts when the XML document is missing a
tag or attribute that you've defined in your variable.

• allowmissing=no means that everything you've defined in your variable
must be present in the XML document. Otherwise, an error is triggered.

• allowmissing=yes means that you can have fields/elements in your
variable that do not exist in the XML document.

allowExtra specifies how RPG reacts when an XML document has "extra"
elements or attributes that you haven't specified in your variable.

• allowextra=no means that there can't be any "extra" elements in the XML
data. Your data structure must have space for all of them. (default)

• allowextra=yes means that extra XML elements or attributes will be
silently ignored.

Note: In my opinion, these options were misguided. allowextra=yes should always be used, because
organizations have the right to extend their XML documents.

And for all practical purposes, allowMissing must be yes, otherwise you can't use arrays for repeating
elements if the size of the list varies.

63

Nested Structures (1 of 3)

D address_t ds qualified
D street 30a
D city 20a
D state 2a
D postal 10a

D Customer ds qualified
D id 5p 0
D type 10a
D name 30a
D contact 30a
D address likeds(addres s_t)

D file s 100a varying
D opts s 100a varying

/free
file = '/xmldemo/simple.xml';
opts = 'doc=file case=any';
xml-into Customer %xml(file: opts);

A qualified data
structure can contain a
subfield defined with

LIKEDS. That subfield
will be be a data
structure, nested

within another data
structure!

64

Nested Structures (2 of 3)

XML data can be nested. It doesn't always correspond to a single/simple data
structure. For example: (This is still much simpler than most real-world
XML!)

<Customer id="56071" type="retail">
<name>Bountiful Grocery, Inc.</name>
<contact>Joseph Bachmann</contact>
<address>

<street>535 N Wabash Ave</street>
<city>Chicago</city>
<state>IL</state>
<postal>60611</postal>

</address>
</Customer>

The <address> element makes a nice, normal, data structure. But the <Customer>
element contains address -- it's like a data structure within a data structure!

65

Nested Structures (3 of 3)

After the code from the previous slide has run, the following subfields will be
filled in, as follows:

CUSTOMER.ID = 56071.
CUSTOMER.TYPE = 'retail '
CUSTOMER.NAME = 'Bountiful Grocery, Inc. '
CUSTOMER.CONTACT = 'Joseph Bachmann '
CUSTOMER.ADDRESS.STREET = '535 N Wabash Ave '
CUSTOMER.ADDRESS.CITY = 'Chicago '
CUSTOMER.ADDRESS.STATE = 'IL'
CUSTOMER.ADDRESS.POSTAL = '60611 '

if Customer.Address.State = 'IL'
and Customer.Type = 'retail';

// handle business rules that apply to Illinois ret ail
// customers.

endif;

You refer to nested fields in your code just like any other variable (except that it
contains the names of the structures as a prefix):

66

Repeated XML Elements (1 of 3)

To demonstrate a list of repeating XML elements, I'm going to use the following
sample XML:

<?xml version="1.0" encoding="utf-8"?>
<CustList>

<Customer id="495"><name>ANCO FOODS & FRIENDS</ name><contact>John
<Customer id="504"><name>FLEMING FOODS- LINCOLN</nam e><contact>Fred Fl
<Customer id="505"><name>FLEMING CO.,</name><contac t>Mickey Mouse</con
<Customer id="506"><name>FLEMING FOODS- PHOENIX</nam e><contact>Michael
<Customer id="510"><name>SYSCO HAMPTON ROADS-SNACK< /name><contact>Minn
<Customer id="516"><name>BELCA FOODSERVICE CORP</na me><contact>Diana P
<Customer id="519"><name>BADGER POULTRY PLUS</name> <contact>Steve Roge
<Customer id="520"><name>NORTHERN LIGHTS DIST INC</ name><contact>Aaron
<Customer id="521"><name>NORTHERN LIGHTS DIST INC</ name><contact>Bruce
<Customer id="522"><name>BUY FOR LESS WAREHOUSE</na me><contact>Clark K

</CustList>

Note that I could not fit all XML elements across the width of the slide. But, all
of the subfields from the previous examples are included for each customer in
the list.

67

Repeated XML Elements (2 of 3)

D address_t ds qualified
D street 30a
D city 20a
D state 2a
D postal 10a

D Customer_t ds qualified
D id 5p 0 inz
D type 10a
D name 30a
D contact 30a
D address likeds(addres s_t)

D CustList ds qualified
D Customer likeds(Custom er_t)
D inz(*likeds)
D dim(400)

One problem is that I don't know how many customers will be in the customer
list. When I code DIM(400), I had to pick the largest number I could ever
handle. Most of the time, my XML document will have fewer than 400…

Adding the DIM()
to my data

structure allows it
to repeat, as an

array:

68

Repeated XML Elements (3 of 3)

file = '/home/klemscot/xmldemo/customerList.xml';
opts = 'doc=file case=any allowmissing=yes';

xml-into CustList %xml(file: opts);

for x = 1 to %elem(CustList.customer);
if CustList.Customer(x).id = 0 ;

leave;
endif;
dsply CustList.Customer(x).name;

endfor;

In the original V5R4 implementation of XML-INTO, it was hard to determine
how many array entries were found.

• there's a field in the PSDS for this, but it doesn't work if your XML
document contains more than one array (most do!)

• my workaround is to set the elements to blanks/zeros using INZ(*LIKEDS)
and end the loop when a zero/blank value is found in a required element.

Since my XML
document will have

fewer than 400
<Customer> tags, I

must specify
allowmissing=yes,
otherwise I'll get an

error when XML-INTO
runs.

69

XML-INTO With Too Much Data

D CustList ds qualified
D Customer likeds(Custom er_t)
D inz(*likeds)
D dim(400)

One problem with XML-INTO (especially at v5r4) is that it's easy to create
variables that are too big.

• My CustList DS is already 54000 bytes long with DIM(400)

• At V5R4, it can only be 65535 or smaller. So DIM(500) would fail.
• In 6.1 and 7.1, CustList could be as large as 16 MB. But with a complex

XML document that has nested loops, that is also easily exceeded.

But I don't really need to load my whole customer file into memory at once!
In many cases, I don't necessarily need 500 (or more) iterations of the
<Customer> element, I only need one at a time.

That's what %HANDLER is for.

70

XML-INTO Under the Covers
We never see the code that runs behind the XML-INTO opcode, but under the
covers, there's computer code, written by IBM.

It works something like this (pseudocode)

dow more data;

read next element or attribute;

load into data structure;

if DS Completely Filled In = Yes;
add 1 to array index;

endif;
enddo;

The problem is that "add 1 to array index" part. If there's a lot of data, it could
eventually get larger than RPG can store.

What's needed is to let the program process the data immediately, rather than
load more and more into the array!

71

XML-INTO Calling a Handler
Suppose IBM lets the code work like this, instead:

dow more data;

read next element or attribute;

load into data structure;

if DS Completely Filled In = Yes;
callp ScottsHandler(the data structure);

endif;
enddo;

Again… we never see the internals of the XML-INTO opcode. But
somewhere in there, it's looping through the XML document.

Wouldn't it be great if that loop could call my "custom routine" when it's time to
process one 'record' of data?

That's what %HANDLER() is for.

72

XML-INTO Calling a Handler
XML-INTO lets you tell it a routine to be called from it's processing loop by
using the %HANDLER BIF in place of the receiver variable.

%HANDLER(Subprocedure-to-call : Parameter);

Notes:
• When specifying %HANDLER, the path= option is required.
• A handler receives it's data structure in the 2nd parameter. This can be an

array if you want RPG to pass you a group of records to process at once.

Parameter ('Communication Area')
• The parameter (oddly named 'communication area') instructs RPG to pass

any one variable to your handler.
• This is for your benefit (RPG doesn't use the variable for anything) to let

you communicate data from the routine calling XML-INTO to the handler.

73

Handler Example (1 of 4)

H DFTACTGRP(*NO)

D address_t ds qualified
D street 30a
D city 20a
D state 2a
D postal 10a

D Customer_t ds qualified
D id 5p 0 inz
D type 10a
D name 30a
D contact 30a
D address likeds(addres s_t)

D MyHandler PR 10i 0
D loaded 10i 0
D cust likeds(Custom er_t) dim(5)
D const
D count 10i 0 value

74

Handler Example (2 of 4)

D file s 100a varying
D opts s 100a varying
D loaded s 10i 0

/free
file = '/home/klemscot/xmldemo/customerList.xml';
opts = 'doc=file case=any allowmissing=yes +

path=CustList/Customer ';

xml-into %Handler(MyHandler : loaded) %xml(file: opts);

dsply ('I loaded ' + %char(loaded) + ' elements.');

*inlr = *on;
/end-free

Now I've told RPG:
• which subprocedure (MyHandler) to call in it's loop
• to pass 'loaded' as a parameter to that procedure.
• RPG will also pass the data structure
• and a count of elements loaded into the data structure

75

Handler Example (3 of 4)

P MyHandler B
D PI 10i 0
D loaded 10i 0
D cust likeds(Custom er_t) dim(5)
D const
D count 10i 0 value

D x s 10i 0
/free

for x = 1 to count;
dsply cust(x).contact;
CustNo = cust(x).id;
Name = cust(x).name;
Contact = cust(x).contact;
Street = cust(x).address.street;
City = cust(x).address.city;
State = cust(x).address.state;
Postal = cust(x).address.postal;
write CUSTFILEF;

endfor;
loaded += count;
return 0;

/end-free
P E

76

Handler Example (4 of 4)

> call MYPGM
DSPLY John Q Public
DSPLY Fred Flintstone
DSPLY Mickey Mouse
DSPLY Michael Corleone
DSPLY Minnie Mouse
DSPLY Diana Prince
DSPLY Steve Rogers
DSPLY Aaron Rodgers
DSPLY Bruce Wayne
DSPLY Clark Kent
DSPLY I handled 10 elements.

Plus, of course, my CUSTFILE file has been populated with records loaded
from the XML document.

77

XML-INTO PTFs (1 of 4)

Problem: If you were faced with an issue like this, how would you define the data
structure?

You can't. An RPG data structure can't have both a subfield (type) and store regular
data ("Scott Klement").

The PTF enables a new option named "datasubf". With datasubf, you define the name
of a data structure subfield that should contain character data. For example:

XML-INTO example %XML(stmf : 'doc=file datasubf= value ');

<example>
<author type="freelance">Scott Klement</author>

</example>

D author_t ds qualified
D type 15a
D value 30a

D example ds qualified
D author likeds(author_t)

78

XML-INTO PTFs (2 of 4)

Need to document

<example>
<employee name="Bob">

<dependents>
<dependent name="Cindy" rel="spouse"/>
<dependent name="Alice" rel="child"/>
<dependent name="Jason" rel="child"/>

</dependents>
</employee>
<employee name="Carol">

<dependents>
<dependent name="John" rel="spouse"/>
<dependent name="Dean" rel="child"/>

</dependents>
</employee>

</example>

Problem: how can you get the count of multiple arrays in the same document?
• employee array
• dependent array

79

XML-INTO PTFs (3 of 4)

Need to document

XML-INTO example %XML(doc: 'doc=file countprefix=cn t');

D dependent_t ds qualified
D name 30a
D rel 10a

D dependents_t ds qualified
D cntDependent 10i 0
D dependent likeds(depende nt_t)
D dim(50)

D employee_t ds qualified
D name 30a
D dependents likeds(depende nts_t)

D example ds qualified
D employee likeds(employe e_t)
D cntEmployee 10i 0

Solution: new countprefix option. Enables RPG to put the count of elements in an
array into a data structure subfield. Any subfield can be counted.

80

XML-INTO PTFs (4 of 4)

PTF adds support for translating these special characters into underscores via
the new case=convert, ns and nsprefix options.

Details are here for datasubf and countprefix:
http://systeminetwork.com/article/ptfs-version-61-enhance-rpgs-xml

And for case=convert, ns and nsprefix:
http://systeminetwork.com/article/xml-namespace-support-added-rpgs-xml

<retail-invoice> ... some data here ... </retail-in voice>
-or-
<tns:doc xmlns:tns="http://example.com/example">

<tns:something />
</tns:doc>

Problem: XML element names allow different characters than RPG variables.

Prior to the PTFs (or if you're using V5R4) you'd have to use XML-SAX for these
documents. XML-INTO can't work, because you can't put a dash or colon character in
an RPG variable name. New options let you replace bad characters with underscores.

81

XML-SAX Concepts

• it loads the file from disk (doc=file) or a variable (doc=string) just as
XML-INTO would.

• Output is always done with %HANDLER.
• You are responsible for mapping the data into your data structure

– or file
– or array
– or subfile
– or wherever you want to put the data!

When you use XML-SAX:

SAX stands for " Simple API for XML"
• simpler than DOM
• but perhaps not as simple as we'd like it to be!
• XML-INTO uses SAX under the covers, but adds extra features in

order to make it simpler yet.
• Sometimes the added flexibility of SAX is useful, however.

82

How SAX Works

When it recognizes any of the above:
• it gets very excited :-)
• it wants to tell you about it!!
• it calls your %HANDLER routine, and tells you what it found.
• after calling your handler, it continues looking for the next event.

SAX works by scanning your XML document, character-by-character, looking
for the special XML characters so that it can recognize:

• the opening tag of an element

• the closing tag of an element

• attributes and their values

• entity references.

• character data between tags.

83

SAX Scanning For Events

Here's an example of the events:

<CustList>
<Customer id="1234" type="retail">

<name>Fred's Pig Sprinklers, Inc. </name>
<contact> Fred </contact>
<address>

<street> 123 Main St. </street>
<city> Cleveland </city>
<state> OH</state>
<postal> 44145 </postal>

</address>
</Customer>
<Customer>
. .
</Customer>
. . More Customers Here . .

</CustList>

Start events in
red

End events in
blue

Character data
events in black

84

How XML-SAX Notifies You

whenever XML-SAX finds an event, it calls your %HANDLER. The
handler must always have the following parameters:

D your-procedure PR 10i 0
D commArea -any-
D event 10i 0 value
D string * value
D stringLen 20i 0 value
D exceptionId 10i 0 value

• commArea = user defined parameter (same as XML-INTO's)
• event = number indicating the event that occurred
• string = pointer to data related to the event

– for start/end events this is an attribute/element name
– for character data, this is the data

• stringLen = length of string parameer
• exceptionId = only used for exception events. Has the XML parser's

error code.

85

Event Values

When your procedure is called, the event parameter is a number that
indicates which event has occurred. RPG provides named constants
for each possible event. Here are some of them:

*XML_START_DOCUMENT
*XML_START_ELEMENT
*XML_ATTR_NAME

*XML_CHARS
*XML_ATTR_CHARS
*XML_PREDEF_REF
*XML_UCS2_REF
*XML_UNKNOWN_REF

*XML_END_DOCUMENT
*XML_END_ELEMENT
*XML_END_ATTR

start of entire XML document
opening tag found (start of an element)
attribute name found (start of an attribute)

character data found (between tags)
character data found (in attribute value)
predefined entity reference
predefined UCS-2 entity reference
another reference (not predefined) found

end of entire XML document
closing tag found (end of an element)
end of an attribute value

86

Keep Track of Tag Path

When using SAX, you are going to need to keep track of the XML
element you're currently working with.

You'll need this information to map your value to a field, later.

This is best done with a stack -- sort of like piling up boxes as you
load them for moving your office.

87

/CustList/Customer/@id

Tracking Position

<CustList>
<Customer id="1234" type="retail">

<name>Fred's Pig Sprinklers, Inc. </name>
<address>

<street> 123 Main St. </street>
<city> Cleveland

. . . and so on . . .

/CustList/Customer

/CustList

/CustList/Customer/name/CustList/Customer/name

/CustList/Customer/address/street/CustList/Customer/address/street/CustList/Customer/address/city

The way I keep track of where I am in the document is by implementing a stack. Each
time the start element handler is called, it pushes a new item onto the stack. Each time
the end element handler is called, it pops the top item off of the stack.

/CustList/Customer/@type/CustList/Customer/address

88

Boxes in Code

To keep track of a stack of boxes in code, do the following:
• have arrays to keep track of the stack

• when XML-SAX tells you it found the start of a new element
• add 1 to the array index
• store the path to the new element into stackname array.
• clear out the value.

• when XML-SAX tells you that character data has been found
• save it to the current array stackval(x) array.

• when XML-SAX tells you that it found the end of an element
• map the value into a data structure or record
• subtract one from the array index

D MAX_DEPTH c 32
D depth s 10i 0 inz(0) static
D stackname s 65535a varying inz(' ')
D dim(MAX_DEPTH)
D stackval s 65535a varying inz(' ')
D dim(MAX_DEPTH)

89

XML-SAX Example (1 of 6)

H DFTACTGRP(*NO)

FCUSTFILE O A E K DISK

D BobsYourUncle PR 10i 0
D loaded 10i 0
D event 10i 0 value
D string * value
D stringLen 20i 0 value
D exceptionId 10i 0 value

D CustRec ds likerec(CUSTF ILEF:*OUTPUT)
D loaded s 10i 0

/free

xml-sax %handler(BobsYourUncle : loaded)
%XML('xmldemo/customerList.xml': 'doc=file');

dsply ('I handled ' + %char(loaded) + ' elements.') ;

*inlr = *on;

/end-free

90

XML-SAX Example (2 of 6)

P BobsYourUncle B
D PI 10i 0
D loaded 10i 0
D event 10i 0 value
D string * value
D stringLen 20i 0 value
D exceptionId 10i 0 value

D value s 65535a based(string)
D ucs2val s 16383c based(string)

D MAX_DEPTH c 32
D depth s 10i 0 inz(0) static
D stackname s 65535a varying inz(' ')
D dim(MAX_DEPTH)
D static
D stackval s 65535a varying inz(' ')
D dim(MAX_DEPTH)
D static

91

XML-SAX Example (3 of 6)

/free
select;
when event = *XML_START_ELEMENT;

depth += 1;
if depth = 1;

stackname(depth) = %subst(value:1:stringLen);
else;

stackname(depth) = stackname(depth-1) + '/'
+ %subst(value:1:stringLen);

endif;
stackval(depth) = '';

callp startEvent(loaded : stackname(depth));

when event = *XML_ATTR_NAME;
depth += 1;
stackname(depth) = stackname(depth-1) + '/@'

+ %subst(value:1:stringLen);
stackval(depth) = '';

callp startEvent(loaded: stackname(depth));

92

XML-SAX Example (4 of 6)

when event = *XML_END_ELEMENT
or event = *XML_END_ATTR;

callp endEvent(loaded
: stackname(depth)
: stackval(depth));

depth -= 1;

when event = *XML_CHARS
or event = *XML_PREDEF_REF
or event = *XML_ATTR_CHARS
or event = *XML_ATTR_PREDEF_REF;

stackval(depth) += %subst(value:1:stringLen);

when event = *XML_UCS2_REF
or event = *XML_ATTR_UCS2_REF;

stackval(depth) += %char(%subst(ucs2val : 1
: %div(stringLen:2)));

endsl;

return 0;
/end-free

P E

93

XML-SAX Example (5 of 6)

P startEvent B
D PI
D loaded 10i 0
D path 65535a varying const

/free
if path = 'CustList/Customer';

loaded += 1;
clear CustRec;

endif;
/end-free

P E

94

XML-SAX Example (6 of 6)
P endEvent B
D PI
D loaded 10i 0
D path 65535a varying const
D value 65535a varying const

/free
select;
when path = 'CustList/Customer/@id';

CustRec.custno = %int(value);
when path = 'CustList/Customer/name';

CustRec.name = value;
when path = 'CustList/Customer/contact';

CustRec.contact = value;
when path = 'CustList/Customer/address/street';

CustRec.street = value;
when path = 'CustList/Customer/address/city';

CustRec.city = value;
when path = 'CustList/Customer/address/state';

CustRec.state = value;
when path = 'CustList/Customer/address/postal';

CustRec.postal = value;
when path = 'CustList/Customer';

write CUSTFILEF CustRec;
endsl;

/end-free
P E

95

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

The sample code shown in this talk can also be down loaded
from the preceding link.

Thank you!

Web Services Basics

Presented by

Scott Klement
http://www.scottklement.com

© 2010-2012, Scott Klement

“Programming is like sex, one mistake and you have to
support it for the rest of your life.”

97

I am a Web Service. What Am I?

• A callable routine. (Program? Subprocedure?)
• Callable over a TCP/IP Network. (LAN? Intranet? Internet?)
• ….can also be called from the same computer.
• Using the HTTP (or HTTPS) network protocol

A routine (program? Subprocedure?) that can be called over a TCP/IP
network. (Your LAN? Intranet?

Despite the name, not necessarily "web"
• different from a "web site" or "web application"
• input and output are via "parameters" (of sorts) and are for programs to

use. No user interface -- not even a browser.
• can be used from a web application (just as an API or program could)

either from JavaScript in the browser, or from a server-side
programming language like RPG, PHP, .NET or Java

• but is just as likely to be called from other environments… even 5250!

98

Write Once, Call From Anywhere

In other words… Services Oriented Architecture (SOA).
• Your business logic (business rules) are implemented as a set of

"services" to any caller that needs them.
• Web services are only one of many ways to implement SOA. Don't

believe the hype!

Callable from anywhere
• Any other program, written in (just about) any language.
• From the same computer, or from another one.
• From the same office (data center), or from another one.
• From folks in the same company, or (if desired) any of your business

partners. Even the public, if you want!

RPG can function as either a provider (server) or a consumer (client)

99

Like Any Other Program Call

• Very similar in concept to the CALL command.
CALL PGM(EXCHRATE) PARM(‘us’ ‘euro’ &DOLLARS &EUROS)

• Runs over the Web, so can call programs on
other computers anywhere in the world.

A “program call” (or subprocedure call) that
works over the Web.

Imagine what you can do....

100

Imagine these scenarios...

Imagine some scenarios:
• You're writing a program that generates price quotes. Your quotes are in US

dollars. Your customer is in Germany. You can call a program that's located
out on the Internet somewhere to get the current exchange rate for the Euro.

• You're accepting credit cards for payment. After your customer keys a credit
card number into your application, you call a program on your bank's computer
to get the purchase approved instantly.

• You've accepted an order from a customer, and want to ship the goods via
UPS. You can call a program running on UPS's computer system and have it
calculate the cost of the shipment while you wait.

• Later, you can track that same shipment by calling a tracking program on
UPS's system. You can have up-to-the-minute information about where the
package is.

101

More Examples

United Parcel Service (UPS) provides web services f or:
• Verifying Package Delivery
• Viewing the signature that was put on a package
• Package Time-in-Transit
• Calculating Rates and Services
• Obtaining correct shipping information (zip codes, etc.)

• FedEx provides web services as well.
• United States Postal Service
• Amazon.com

• Validate Credit Cards
• Get Stock Quotes
• Check the Weather

102

Better Than a Web App?

• How are they different from web pages?

• Or applications that use HTML for their user interface?

• Can't I just call a regular web app from a program?

• What good is a Web service, then?

Designed to be called from other programs,
instead of interfacing directly with the user.

Well, let's start by examining how a simple
web application might work…

103

Web Applications

• A Web browser displays a web page containing input
fields

• The user types some data or makes some selections

• The browser sends the data to a web server which then
passes it on to a program

• After processing, the program spits out a new web page
for the browser to display

Flow of a typical web application…

104

Web Enabled Invoice

105

Web Enabled Invoice

106

An idea is born

• Automatically download the invoice in a program.

• Read the invoice from the download file, get the invoice
number as a substring of the 3rd line

• Get the date as a substring of the 4th line

• Get the addresses from lines 6-9

Eureka! Our company could save time!

Problem: The data is intended for people to
read. Not a computer program!

• Data could be moved, images inserted, colors added

• Every vendor's invoice would be complex & different

107

Need to Know "What"

• Where they sit on a page.

• What they look like

What you want to know is what things are,
rather than:

The vendor needs to send data that's
"marked up."

108

"Marked Up" Data

109

"Marked Up" Data with XML

<invoice>
<remitto>

<company>Acme Widgets, Inc</company>
</remitto>
<shipto>

<name>Scott Klement</name>
<address>

<addrline1>123 Sesame St.</addrline1>
<city>New York</city>
<state>NY</state>
<postalCode>54321</postalCode>

</address>
</shipto>
<billto>

<name>Wayne Madden</name>
<company>Penton Media - Loveland</company>
<address>

<addrline1>221 E. 29th St.</addrline1>
<city>Loveland</city>
<state>CO</state>
<postalCode>80538</postalCode>

</address>
</billto>

110

"Marked Up" Data with XML

<itemlist>
<item>

<itemno>56071</itemno>
<description>Blue Widget</description>
<quantity>34</quantity>
<price>1.50</price>
<linetotal>51.00</linetotal>

</item>
<item>

<itemno>98402</itemno>
<description>Red Widget with a Hat</description>
<quantity>9</quantity>
<price>6.71</price>
<linetotal>60.39</linetotal>

</item>
<item>

<itemno>11011</itemno>
<description>Cherry Widget</description>
<quantity>906</quantity>
<price>0.50</price>
<linetotal>453.00</linetotal>

</item>
</itemlist>
<total>564.39</total>

</invoice>

111

XML Is Only One Option

• As discussed, it identifies "what"
• Possible to add more info without breaking compatibility
• Readable from any modern programming language
• Self-describing (well, sort of.)

Most web services use XML

Not all web services use XML
• Some do use it for both input and output
• Some use it only for output, and get input via URL
• Some use other formats (most commonly, JSON)

112

How Do They Work?

HTTP starts with a request for the server
• Can include a document (XML, JSON, etc)
• Document can contain "input parameters"

HTTP then runs server-side program
• input document is given to program
• HTTP waits til program completes.
• program outputs a new document (XML, JSON, etc)
• document contains "output parameters"
• document is returned to calling program.

113

REST Web Services

http://www.scottklement.com/cust/495

• REST means "REpresentational State Transfer"
• The URL is said to "represent" an object -- and provides the input parmeters

•I like to think of it as "the noun"
• http � the network protocol
• www.scottklement.com � the server
• /cust/495 � the thing you want to act upon (the "noun")

• The HTTP "method" (like an opcode) theoretically provides the "verb"
• Due to software limitations, sometimes part of the URL is used for the verb

instead of the HTTP method.

Possible methods (and how they "change the state" of the object)
• GET (default) -- retrieve the customer -- same as typing URL into browser.
• POST -- modify the customer
• PUT -- create/replace the customer
• DELETE -- delete the customer

114

RESTful Example

GET http://www.scottklement.com/cust/ 495
-or-
GET http://www.scottklement.com/cust/495? op=retrieve

Easier way to think of REST
• all input is in URL
• output has no standard… can be anything (but usually is XML or JSON)

For example, you might have a web service that takes a customer number as
input, and returns that customer's address.

<result>
<cust id=" 495">

<name>ANCO FOODS</name>
<street> 1100 N.W. 33RD STREET </street>
<city> POMPANO BEACH</city>
<state> FL</state>
<postal> 33064-2121 </postal>

</cust>
</result>

In
pu

t
O

ut
pu

t

115

REST With Multiple Parameters

http://www.scottklement.com/invoice/ 495 / 20100901 / 20100930

• Although the previous slide had only one parameter, REST can have
multiple parameters -- but they must all fit on the same URL.

• This web service is designed to return a list of invoices for a given customer
number, within a given date range.

• 495 = customer number
• 20100901 = start date (in year, month, date format)
• 20100930 = end date (in year, month, date format)

The web service would scan for the slashes, get the parameter info from the
URL, and build an XML document that matches the criteria.

Hope you get the idea… Since our time is limited, I won't show the XML
details for this REST service -- but I will implement the same service with POX

116

POX Web Services

http://www.scottklement.com/poxlib/invoice.pgm

• POX means "Plain Old XML"

• The URL points to a program that processes the XML

• The input message can be any XML document (you design it!)

• The program reads the XML, gets the input, processes it, and sends output

• Output can be any XML document (you design it!)

• Notice that the preceding URL doesn't contain any input parameters, it
merely tells the system which program to run.

• The input parameters are uploaded from an XML file…

117

Input and Output in XML

<histQuery>
<custno> 4997 </custno>
<strdate> 20100930 </strdate>
<enddate> 20100930 </enddate>

</histQuery>

In
pu

t

<invoiceList>
<invoice id=" 76422 ">

<date> 20100930 </date>
<name>JACKIE OLSON</name>
<amount> 24.00 </amount>
<weight> 8.0 </weight>

</invoice>
<invoice id=" 76424 ">

<date> 20100930 </date>
<name>REYNLDO DE LA TORE</name>
<amount> 5.00 </amount>
<weight> 5.0 </weight>

</invoice>
</invoiceList>

O
ut

pu
t

118

SOAP Web Services

• Identical to POX, except it follows the SOAP standards for the XML
documents.

• Also sends/receives data in XML format. Always XML.

• The XML represents the "parameters"

• Upload an XML document with "input parameters"

• …then download an XML document with "output parameters"

• An additional "verb" can be supplied in the SoapAction parameter.

• Format of XML is heavily standardized.

• Always accompanied by a WSDL file (though, the other types can be, too)

• XML is designed to be understood/generated by tools.

• By far the most complicated alternative… tooling is almost a requirement.

119

How Would You Tell the World?

So… Web Services are Essentially Program Calls
• But different, because it's over "the web" (http)
• Every web service is different from the next.
• There are different methods of passing "parameters"

- and all of those methods are different from traditional RPG parameters!

If you wrote a reusable program, and wanted everyone to use it, how would
you explain it?

• Which server is it on?
• Which network protocol should you call it with?
• What parameters does it accept? (Sequence, data types, etc)

Would you use?
• Documentation in MS Word? Or PDF? Or a wiki somewhere?
• Maybe you'd teach other programmers in person? (like me!)
• Comments in the code?
• Expect the caller to read the code??!

120

WSDL Files

Web Services Description Language (WSDL)
• pronounced "WHIZ-dull"
• Standardized way of documenting a web service.
• A type (schema? flavor?) of XML
• Can be generated by a tool from your parameter list!
• Can be read by a computer program to make your service easy to call
• Almost always used with SOAP. Occasionally also used with POX or REST.

Describes the web service:
• What it does
• What routines it offers (like procedures in a service program)
• Where the service is located (domain name or IP address)
• Protocol to use
• Structure of input/output messages (parameters)

121

WSDL Skeleton

<definitions>

<types>
definition of types........

</types>

<message>
definition of a message....

</message>

<portType>
definition of a port.......

</portType>

<binding>
definition of a binding....

</binding>

<service>
a logical grouping of ports...

</service>

</definitions>

<types> = the data types that
the web service uses.

<message> = the messages
that are sent to and received

from the web service.

<portType> = the operations
(or, “programs/procedures” you

can call for this web service.

<binding> = the network
protocol used.

<service> = a grouping of
ports. (Much like a service

program contains a group of
subprocedures.)

122

SOAP

SOAP = Simple Object Access Protocol

SOAP is an XML language that describes the parameters that you pass to the
programs that you call. When calling a Web service, there are two SOAP
documents -- an input document that you send to the program you're calling, and
an output document that gets sent back to you.

"Simple" is a relative term!

• Not as simple as RPG parameter lists.
• Not as simple as REST or POX
• Simpler than CORBA.

• Pretty much identical to POX, except the XML is standardized -- and there's
a WSDL!

123

SOAP Skeleton

<soap:Envelope xmlns:soap="http://www.w3.org/2001/1 2/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap- encoding" >

<soap:Header>
(optional) contains header info, like payment info or authentication info

(crypto key, userid/password, etc)
</soap:Header>

<soap:Body>
. . .
Contains the parameter info. (Varies by application .)
. . .
<soap:Fault>

(optional) error info.
</soap:Fault>
. . .

</soap:Body>

</soap:Envelope>

Here's the skeleton of a SOAP message:

124

Namespaces

SOAP always uses name spaces
• you combine your parameter data (user defined XML) with SOAP XML
• chance of conflicting names!
• name spaces keep them unique
• the URI of a name space isn't connected to over the network, it just

guarantees uniqueness (there's only one w3.org!)

<soap:Envelope xmlns:soap="http://www.w3.org/2001/1 2/soap-envelope"
xmlns:morgue="http://example.morgue.com/xml/cadaver net">

<soap:Body >
<morgue:CadaverArray>

<morgue:Body >
<morgue:lastName>Klement</morgue:lastName>
<morgue:firstName>Scott</morgue:firstName>

</morgue:Body>
<morgue:Body >

<morgue:lastName>Smith</morgue:lastName>
<morgue:firstName>Paul</morgue:firstName>

</morgue:Body>
</morgue:CadaverArray>

</soap:Body>
</soap:Envelope>

125

More Namespace Notes
• An xmlns without a prefix designates the "default" namespace.
• It's the URI, not the prefix that identifies the namespace.

(in the example below, tns:Body and Body are interchangable)
• Until recently, XML-INTO had very poor support for name spaces. (A

recent PTF added better namespace capability for 6.1+)

<soap:Envelope xmlns:soap="http://www.w3.org/2001/1 2/soap-envelope"
xmlns:tns="http://example.morgue.com/xml/cadavernet "
xmlns="http://example.morgue.com/xml/cadavernet" >

<soap:Body >
<CadaverArray>

<tns:Body >
<lastName>Klement</lastName>
<firstName>Scott</firstName>

</tns:Body>
<Body>

<lastName>Smith</lastName>
<firstName>Paul</firstName>

</Body>
</CadaverArray>

</soap:Body>
</soap:Envelope>

126

Currency Exchange Example

• Free "demo" web service from WebServiceX.net
• The most frequently used sample that's included with HTTPAPI

If you've never used it before, how would you find it?
• Browsing a site like WebServiceX.net
• Or XMethods.net
• Or BindingPoint.com
• Or RemoteMethods.com
• Or simply Google for "(SUBJECT) WSDL"

- such as "Currency Exchange WSDL"

• Download the WSDL file to learn about the service.
• Almost everyone will use a tool (software) to understand WSDL
• I prefer an open source tool called SoapUI (which is available in both a

"free" and "for money/supported" version.)

The WSDL will (of course) tell you what the SOAP messages would look like

127

Sample SOAP Documents

<?xml version="1.0"?>
<SOAP:Envelope (namespaces here)>

<SOAP:Body>
<ConversionRate>

<FromCurrency> USD</FromCurrency>
<ToCurrency> EUR</ToCurrency>

</ConversionRate>
</SOAP:Body>

</SOAP:Envelope>

I've removed the namespace information to keep this example clear and simple. (In a
real program, you'd need those to be included as well.)

<?xml version="1.0"?>
<SOAP:Envelope (namespaces here)>

<SOAP:Body>
<ConversionRateResponse>

<ConversionRateResult> 0.7207 </ConversionRateResult>
</ConversionRateResponse>

</SOAP:Body>
</SOAP:Envelope>

In
pu

t M
es

sa
ge

O
ut

pu
t M

es
sa

ge

128

SoapUI (1/2)

Click File / New WSDL Project

PROJECT NAME

can be any name – use
something you'll

remember.

INITIAL WSDL

can be either a URL on
the web, or a file on

your hard drive.

You can use "Browse"
to navigate via a

standard Windows file
dialog.

SoapUI is an open source (free of charge) program that you can use to get the SOAP
messages you'll need from a WDSL document. http://www.soapui.org

129

SoapUI (2/2)

SoapAction is found in the
box to the left. (Highlight
the "Operation" not the

request.

If you expand the tree
on the left, and double-
click the operation, it
shows you the SOAP

message.

You can edit the SOAP
and click the green

arrow to give it a try.

130

Exercises

• Look around the Internet for some REST web services. Try them in your
browser, see what you get with different input values.

• Try the same thing with POX services. Just type an XML document into an
editor, and send it with an HTTP tool like HTTPAPI.

• Install SoapUI on your PC.

• Try loading different WSDLs into SoapUI, changing the parameters, and
running them.

RPG as a Web Service Provider

Presented by

Scott Klement
http://www.scottklement.com

© 2010-2012, Scott Klement

"If you give someone a program, you will frustrate
them for a day; if you teach them how to program,

you will frustrate them for a lifetime."

132

Break is Over, time for REST

ScriptAlias /cust /qsys.lib/restful.lib/custinfo.pgm
<Directory /qsys.lib/restful.lib>

Order Allow,Deny
Allow From All

</Directory>

To get started with REST, let's tell Apache how to call our program.

• Just add the preceding code to an already working Apache instance on IBM i.
• ScriptAlias tells apache that you want to run a program.
• If URL starts with /invoice , Apache will CALL PGM(RESTFUL/CUSTINFO)

• Our REST web service can be run from any IP address (Allow from all).

http://as400.klements.com /cust /495

• Browser connects to: as400.klements.com

• Apache sees the /invoice and calls RESTFUL/INVOICE
• Our program can read the 495 (customer number) from the URL itself.

133

This is CGI -- But It's Not HTML

Web servers (HTTP servers) have a standard way of calling a program on the
local system. It's know as Common Gateway Interface (CGI)

• The URL you were called from is available via the REQUEST_URI env. var

• If any data is uploaded to your program (not usually done with REST) you can
retrieve it from "standard input".

• To write data back from your program to Apache (and ultimately the web
service consumer) you write your data to "standard output"

To accomplish this, I'm going to use 3 different APIs (all provided by IBM)
• QtmhRdStin � reads standard input
• getenv � retrieves an environment variable.
• QtmhWrStout � writes data to standard output.

134

Example REST Provider (1 of 3)

FCUSTFILE IF E K DISK

D getenv PR * extproc('gete nv')
D var * value options (*string)

D QtmhWrStout PR extproc('Qtmh WrStout')
D DtaVar 65535a options(*vars ize)
D DtaVarLen 10I 0 const
D ErrorCode 8000A options(*vars ize)

D err ds qualified
D bytesProv 10i 0 inz(0)
D bytesAvail 10i 0 inz(0)

D xml pr 5000a varying
D inp 5000a varying const

D CRLF C x'0d25'
D pos s 10i 0
D uri s 5000a varying
D data s 5000a

135

Example REST Provider (2 of 3)

/free
uri = %str(getenv('REQUEST_URI'));

monitor;
pos = %scan('/cust/': uri) + %len('/cust/');
custno = %int(%subst(uri:pos));

on-error;
data = 'Status: 500 Invalid URI' + CRLF

+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<error>Invalid URI</error>' + CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);
return;

endmon;

chain custno CUSTFILE;
if not %found;

data = 'Status: 500 Unknown Customer' + CRLF
+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<error>Unknown Customer Number</error>' + CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);
return;

endif;

REQUEST_URI will
contain

http://x.com/cust/495

Custno is everything
after /cust/ in the URL

If an error occurs, I set
the status to 500, so the
consumer knows there
was an error. We also
provide a message in

XML, in case the
consumer wants to

show the user.

136

Example REST Provider (3 of 3)

data = 'Status: 200 OK' + CRLF
+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<result>'
+ '<cust id="' + %char(custno) + '">'
+ '<name>' + xml(name) + '</name>'
+ '<street>' + xml(street) + '</street>'
+ '<city>' + xml(city) + '</city>'
+ '<state>' + xml(state) + '</state>'
+ '<postal>' + xml(postal) + '</postal>'
+ '</cust>'
+ '</result>' + CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);

Status 200 means that
all was well.

Here I send the XML
Response.

The xml() subprocedure is just a little tool to esc ape any special
characters that might be in the database fields.

I won't include the code for that in this talk, but you can download
the complete program from my web site (see link at end of handout.)

137

Test the REST

You can test REST web services that use the
GET method simply by typing the URL into

your browser.

138

If successful, the output from the web service will now be in the DOWNLOAD
file, shown above as /tmp/resttest.xml . Use the IBM i DSPF command
to view it on green-screen:

Test REST with HTTPAPI

HTTPAPI REQTYPE(*GET)
URL('http://as400.klements.com/cust/520')
DEBUG('/tmp/restdebug.txt')
DOWNLOAD('/tmp/resttest.xml')

DSPF STMF('/tmp/resttest.xml')

This requires HTTPAPI version 1.24 or later. This is currently in beta at:
http://www.scottklement.com/httpapi/beta/

HTTPAPI supports both GET and POST methods, and PUT & DELETE are
planned for the future. Plus, the DEBUG file can provide extra debugging
information when something is wrong.

DSPF STMF('/tmp/restdebug.xml')

139

A POX on Your REST!

Advantages of REST server
• Relatively simple to code with RPG/Apache.
• Simple enough that no special tools are needed, it's reasonable for you to

test/develop it yourself.
• Runs very efficiently.
• Easy to test (just use a browser.)
• Especially useful when you'll be implementing both the client/server inhouse.
• Very easy to call from JavaScript (AJAX)

Disadvantages of REST server
• Input parameters are very limited
• Input must be URL encoded, and legal in a URL
• Input length is limited (approx 2000 total length -- varies from browser to browser)

• No tooling supports it.
• There's no standard to the format of input/output information

Some of these limitations (mainly the input parameter limitations) can be
solved by using POX.

140

Apache Meets POX

ScriptAlias /poxlib /qsys.lib/poxlib.lib
<Directory /qsys.lib/poxlib.lib>

Order Allow,Deny
Allow From All

</Directory>

To get started with REST, let's tell Apache how to call our program.

• Just add the preceding code to an already working Apache instance on IBM i.
• ScriptAlias tells apache that you want to run a program.
• If URL starts with /poxlib , Apache will call pgms in POXLIB library.
• Our POX web services can be run from any IP address.

http://as400.klements.com /poxlib /invoice.pgm

• Browser connects to: as400.klements.com

• Apache sees the /poxlib/invoice.pgm and calls POXLIB/INVOICE
• Both input & output parameters are in XML

141

Example POX Provider (1 of 4)

D QtmhRdStin PR extproc('Qtmh RdStin')
D RcvVar 65535a options(*vars ize)
D RcvVarLen 10I 0 const
D LenAvail 10I 0
D ErrorCode 8000A options(*vars ize)

D QtmhWrStout PR extproc('Qtmh WrStout')
D DtaVar 65535a options(*vars ize) const
D DtaVarLen 10I 0 const
D ErrorCode 8000A options(*vars ize)

D err ds qualified
D bytesProv 10i 0 inz(0)
D bytesAvail 10i 0 inz(0)

D xml pr 5000a varying
D inp 5000a varying const

D CRLF C x'0d25'
D inputLen s 10i 0
D inputXml s 65535a
D data s 5000a

142

Example POX Provider (2 of 4)

// inputXml will look like this:
//
// <histQuery>
// <custno>4997</custno>
// <strdate>20100901</strdate>
// <enddate>20100930</enddate>
// </histQuery>

D inputParm ds qualified
D custno 4s 0
D strdate 8s 0
D enddate 8s 0

/free
inputXml = *blanks;

QtmhRdStin(inputXml
: %size(inputXml)
: inputLen
: err);

xml-into inputParm %xml(inputXml: 'path=histQuery') ;

With XML-INTO, the DS
subfields need to match

the XML element or
attribute names.

QtmhRdStin() loads the XML
document uploaded from the

consumer into a variable named
inputXml

xml-into parses the
XML, and loads it into

the inputParm DS.

143

Example POX Provider (3 of 4)

exec SQL declare C1 cursor for
select aiOrdn, aiIDat, aiSNme, aiDamt, aiLbs

from ARSHIST
where aiCust = :inputParm.custno

and aiIDat between :inputParm.strdate
and :inputParm.enddate;

exec SQL open C1;
exec SQL fetch next from C1 into :row;

if sqlstt<>'00000'
and %subst(sqlstt:1:2) <> '01'
and %subst(sqlstt:1:2) <> '02';

data = 'Status: 500 Query Failed' + CRLF
+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<error>Failed with SqlState=' + sqlstt + '</erro r>'
+ CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);
return;

endif;

The input parameters
are used to look up the

invoices for the
customer with SQL.

If there are any errors, I use status
500, just as I did in the REST

example.

144

Example POX Provider (4 of 4)

data = 'Status: 200 OK' + CRLF
+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<invoiceList>';

QtmhWrStout(data: %len(%trimr(data)): err);

dow sqlstt='00000' or %subst(sqlstt:1:2)='01';
data = '<invoice id="' + row.inv + '">'

+ '<date>' + %editc(row.date:'X') + '</date> '
+ '<name>' + xml(row.name) + '</name> '
+ '<amount>' + %char(row.amount) + '</amoun t>'
+ '<weight>' + %char(row.weight) + '</weigh t>'
+ '</invoice>';

QtmhWrStout(data: %len(%trimr(data)): err);
exec SQL fetch next from C1 into :row;

enddo;

exec SQL close C1;

data = '</invoiceList>' + CRLF;
QtmhWrStout(data: %len(%trimr(data)): err);

The writes to standard output are
appended to each other. (Much

like adding records to a file.)

So I can can write XML data in a
loop, and the result will be one

big XML document to the
consumer.

145

Testing for POX (1 of 2)

HTTPAPI REQTYPE(*POST)
URL('http://as400.klements.com/poxlib/invoice.pgm')
UPLOAD('/tmp/poxinput.xml')
DOWNLOAD('/tmp/poxoutput.xml')
DEBUG('/tmp/poxdebug.txt')

To test POX, we need to create an XML file to upload. The file must be ASCII.

<histQuery>
<custno>4997</custno>
<strdate>20100901</strdate>
<enddate>20100930</enddate>

</histQuery>

QSH CMD('touch -C 819 /tmp/poxinput.xml')

EDTF STMF('/tmp/poxinput.xml')

Enter this:

Now send it to the POX web service (again, requires HTTPAPI 1.24+)

146

Testing for POX (2 of 2)

To test POX, we need to create an XML file to upload. The file must be ASCII.

DSPF STMF('/tmp/poxoutput.xml')

Tip: If you download
the XML file to your

PC, and view it with a
browser, it'll be much

easier to read!

147

Clean up the POX with SOAP

Advantages to POX
• Still relatively simple.
• Doesn't have the limitations on input parameters that REST has.

Disadvantages of POX
• Still no standard
• Still no tooling
• Slower and more complicated than REST.
• How would you document it for other programmers to use? If you published

it to the whole world, how easy would it be for them to implement it?

SOAP, with WSDL, is more complicated yet. But it's format is standardized,
and the tooling available for SOAP makes it easier for the "average joe on the
street" to call your web service.

148

IBM's Integrated Web Services Server

We could do SOAP the same way as POX -- but we'd have to develop the
WSDL file manually, and that would be difficult. Fortunately, IBM provides a
Web Services tool with IBM i at no extra charge!

The tool takes care of all of the HTTP and XML work for you!

It's called the Integrated Web Services tool.
http://www.ibm.com/systems/i/software/iws/

• Can be used to provide web services
• Can also be used to consume them -- but requires in-depth knowledge of

C and pointers -- I won't cover IBM's consumer tool today.

Requirements:
• IBM i operating system, version 5.4 or newer.
• 57xx-SS1, opt 30: QShell
• 57xx-SS1, opt 33: PASE
• 57xx-JV1, opt 8: J2SE 5.0 32-bit (Java)
• 57xx-DG1 -- the HTTP server (powered by Apache)

Make sure you have the latest cum & group PTFs installed.

149

SOAP Example and PCML

This is an example of creating a SOAP web service that works like the 'CUST'
REST example that I showed you previously. To get started, I need an RPG
program that uses input/output parameters for the fields we want to return.

PCML = Program Call Markup Language

• A flavor of XML that describes a program's (or *SRVPGM's) parameters.

• Can be generated for you by the RPG compiler, and stored in the IFS:

CRTBNDRPG PGM(xyz) SRCFILE(QRPGLESRC)
PGMINFO(*PCML)
INFOSTMF('/path/to/myfile.pcml')

H PGMINFO(*PCML:*MODULE)

• Or can be embedded into the module/program objects themselves, with an
H-spec:

150

SOAP GETCUST (1 of 2)

H DFTACTGRP(*NO) ACTGRP('SOAP') PGMINFO(*PCML: *MOD ULE)

FCUSTFILE IF E K DISK PREFIX('CUST. ')

D CUST E DS qualified
D extname(CUSTF ILE)

D GETCUST PR ExtPgm('GETCU ST')
D CustNo like(Cust.Cus tno)
D Name like(Cust.Nam e)
D Street like(Cust.Str eet)
D City like(Cust.Cit y)
D State like(Cust.Sta te)
D Postal like(Cust.Pos tal)
D GETCUST PI
D CustNo like(Cust.Cus tno)
D Name like(Cust.Nam e)
D Street like(Cust.Str eet)
D City like(Cust.Cit y)
D State like(Cust.Sta te)
D Postal like(Cust.Pos tal)

PCML with parameter
info will be embedded

in the module and
program objects.

When there's no P-spec,
the PR/PI acts the same as

*ENTRY PLIST.

This PREFIX causes the
file to be read into the

CUST data struct.

151

SOAP GETCUST (2 of 2)

/free
chain CustNo CUSTFILE;
if not %found;

msgdta = 'Customer not found.';
QMHSNDPM('CPF9897': 'QCPFMSG *LIBL'

: msgdta: %len(msgdta): '*ESCAPE'
: '*PGMBDY': 1: MsgKey: err);

else;
Custno = Cust.Custno;
Name = Cust.name;
Street = Cust.Street;
City = Cust.City;
State = Cust.State;
Postal = Cust.Postal;

endif;
*inlr = *on;

/end-free

This API is equivalent
to the CL

SNDPGMMSG
command, and

causes my program
to end with an

exception ("halt")

When there are no
errors, I simply return

my output via the
parameter list. IWS

takes care of the XML
for me!

152

The Wizarding World

Step 1 was to make my RPG program, using parameters to return the result.

Step 2 is to set it up in the IWS's web service wizard.

• It'll do all the XML and HTTP stuff for me.

• Theoretically, I don't need to know anything about the XML…

• In other languages (Java, .NET, PHP, etc) many programmers know nothing
about how SOAP web services work internally -- they just know it's a way to
call a routine over a network. They're used to the XML being handled for
them.

Step 3 will be to test my new web service with SoapUI

153

The IWS Wizard (1 of 13)

Click here to get to the
web services wizard.

To get started, point your browser at:

http://yoursystem:2001

154

The IWS Wizard (2 of 13)

Make sure you are on
the "manage" tab.

And click "all servers"

Then "Create Web
Services Server"

155

The IWS Wizard (3 of 13)

Here you enter the userid that
the IBM server (not your RPG

program) runs under.

A single server can be used to
host many RPG or Cobol

programs.

I recommend either taking the
IBM default (first option on

left) or creating a userid that's
only used for this.

156

The IWS Wizard (4 of 13)

Click next…

157

The IWS Wizard (5 of 13)

This is how the IWS finds
your program. It will extract

parameter info from the
embedded PCML.

If you use an external PCML,
an extra screen will prompt

you for the IFS location.

158

The IWS Wizard (6 of 13)

This is the name & description of
your service, as it'll appear in the
WSDL, as well as the IWS wizard

screens.

159

The IWS Wizard (7 of 13)

Here you specify which parameters
should appear in the input SOAP
(XML) message, the output SOAP

(XML) message or both.

160

The IWS Wizard (8 of 13)

Now you specify the userid that your RPG
program will run under

You can choose "Use server's" if you want
the same one selected in step 3.

161

The IWS Wizard (9 of 13)

Here you configure the exact library list that you want
your RPG program to run under.

Use the Add/Remove/Up/Down buttons to add/remove
libraries, and change their order.

162

The IWS Wizard (10 of 13)

The wizard is done. It has all of
the information it needs! It

displays this summary screen,
so you can double-check the

settings.

When you click 'Finish', it'll
generate the appropriate Java
programs to handle your XML
and call your RPG program.

163

The IWS Wizard (11 of 13)

While it's generating the Java
code to call your service, you'll

see this screen. Click the
"refresh" button every minute or

so to check the status.

164

The IWS Wizard (12 of 13)

The page will contain this box
when the process is complete.

IBM automatically creates the
"ConvertTemp" service as a sample to

let you test your server.

GETCUST is mine -- the one I just
created.

You can do tests, add/delete services,
and get the WSDL for your service by

clicking the "Manage Deployed
Services" link on the left.

When you see this box (with the "green light" balls) it
means your service is active!

165

The IWS Wizard (13 of 13)

This is what you see when you click
"Manage Deployed Services"

Some of the buttons (stop, properties,
etc) will only show up after you check

the radio button on the left.
The "View Definition" buttons are

links to the WSDL for the
corresponding service.

166

Testing SOAP with SoapUI (1 of 4)

Step 2:

Paste in URL to WSDL
(from the "View Service
Definition" link) into the

Initial WSDL blank.

Step 1:

Click File -> New Project

(some versions say "WSDL
project", others say "SoapUI
project. They're the same.)

167

Testing SOAP with SoapUI (2 of 4)

Step 3:

Expand tree til you find the
'Request 1'. Double click it

to see SOAP request.

Step 4:

Enter the customer number
into the SOAP message for

the input parms.

168

Testing SOAP with SoapUI (3 of 4)

Step 5:

Click the small green triangle
-- SoapUI will send the

request over HTTP to the
IWS server!

169

Testing SOAP with SoapUI (4 of 4)

Step 6:

View the returned SOAP
message (output parms) it

worked!

170

A SOAP Service With a List

The GETCUST service only returns one "record" so to speak.
Can I do something like the "Invoice List" (the POX example) using SOAP?

• Q: How do I do that if Idon't code the XML in the program?
• A: With an array!

• Q: How do make an array that returns a list of "records" (more than one field
per array element)?

• A: Use an array of data structures.

• Q: What if the number of returned elements (i.e. the number of invoices in the
list) varies? How can I specify the number of returned array elements?

• A: If you code a "10i 0" parameter in your parameter list, IWS will let you use it
to control the array size.

171

SOAPINV (invoice list) (1 of 2)

H OPTION(*SRCSTMT: *NODEBUGIO) PGMINFO(*PCML:*MODULE)

D row ds qualified inz
D inv 5a
D date 8s 0
D name 25a
D amount 9p 2
D weight 9p 1

D SOAPINV PR ExtPgm('SOAPI NV')
D CustNo 4p 0 const
D strDate 8p 0 const
D endDate 8p 0 const
D rtnCount 10i 0
D rtnList likeds(row) d im(999)
D SOAPINV PI
D CustNo 4p 0 const
D strDate 8p 0 const
D endDate 8p 0 const
D rtnCount 10i 0
D rtnList likeds(row) d im(999)

rtnCount will tell
IWS how many

invoices are
returned. (to a
999 maximum)

rtnList is the
returned array.

Notice: LIKEDS!

This is what needs to
be returned for each

invoice in the list

172

SOAPINV (invoice list) (2 of 2)

rtnCount = 0;

exec SQL declare C1 cursor for
select aiOrdn, aiIDat, aiSNme, aiDamt, aiLbs

from ARSHIST
where aiCust = :CustNo

and aiIDat between :strDate
and :endDate ;

exec SQL open C1;
exec SQL fetch next from C1 into :row;

dow sqlstt='00000' or %subst(sqlstt:1:2)='01';
rtnCount = rtnCount + 1;
rtnList(rtnCount) = row;
exec SQL fetch next from C1 into :row;

enddo;

exec SQL close C1;

For each record
found, rtnCount
is updated, and
rtnList() array

contains a row.

CustNo, strDate and
endDate are all input

parameters passed by
IWS.

173

SOAPINV In the Wizard (1 of 2)

Deploy new service adds
another web service to the

existing server.

The other screens will be the same as
they were for GETCUST.

Except, that on the parameter screen,
I have to tell IWS about the returned
parameter count.

174

By default, the count for RTNLIST is 999, just like the DIM(999) in my RPG code.

But I can change it to "RTNCOUNT" because RTNCOUNT happens to be a 10i 0 field, IWS knows it
can be used to specify the array size.

Unfotunately, there's no way to stop IWS from sendi ng RTNCOUNT to the consumer, as well. (But
if the consumer doesn't need it, it can ignore it.)

SOAPINV In the Wizard (2 of 2)

175

Exercises

• Download and try the REST services from this talk (using a browser.)

• Modify the REST service to take multiple parameters, and return an array (like
the POX example)

• Try writing your own REST web service.

• Try the POX example. Is it easier or harder than the REST one?

• Install/configure a SOAP web service using IWS.

• Note how the IWS simplifies writing the service… but also note the
performance difference, and limitations of parameter types.

• Try calling your IWS web service with SoapUI.

• Bigger Challenge: Using the same XML from SoapUI, and the WSDL from
IWS, try creating a SOAP service manually -- like the POX one, where the
data is uploaded/downloaded through Apache. Note the performance
difference.

RPG as a Web Service Consumer

Presented by

Scott Klement
http://www.scottklement.com

© 2010-2012, Scott Klement

"I would love to change the world, but they won't
give me the source code"

177

HTTPAPI

Normally when we use the Web, we use a Web browser. The browser connects to a web
server, issues our request, downloads the result and displays it on the screen.

When making a program-to-program call, however, a browser isn't the right tool. Instead,
you need a tool that knows how to send and receive data from a Web server that can be
integrated right into your RPG programs.

That's what HTTPAPI is for!

• HTTPAPI is a free (open source) tool to act like an HTTP client (the role usually played
by the browser.)

• HTTPAPI was originally written by me (Scott Klement) to assist with a project that I had
back in 2001.

• Since I thought it might be useful to others, I made it free and available to everyone.

http://www.scottklement.com/httpapi/

178

More about HTTPAPI

• I needed a way to automate downloading ACS updates
from the United States Postal Service

• A friend needed a way to track packages with UPS from
his RPG software

• Since many people seemed to need this type of
application, I decided to make it publicly available under
an Open Source license

How did HTTPAPI come about?

179

Consume REST (1 of 3)

This is the REST example from the last section -- but now I'll consume it!

H DFTACTGRP(*NO) ACTGRP('KLEMENT') BNDDIR('HTTPAPI')

/copy HTTPAPI_H
/copy IFSIO_H

D url s 1000a varying
D stmf s 1000a varying
D rc s 10i 0
D errMsg s 52a varying

D custInfo ds qualified
D id 4s 0
D name 25a
D street 25a
D city 15a
D state 2a
D postal 10a

C *ENTRY PLIST
C PARM InputCu st 15 5

180

Consume REST (2 of 3)

/free
stmf = '/tmp/getcust.xml';
url = 'http://as400.klements.com/cust/'

+ %char(%int(InputCust));

rc = http_get(url: stmf);
if (rc<>1 and rc<>500);

http_crash();
endif;

if rc=500;
xml-into errMsg %xml(stmf: 'path=error doc=file');
dsply errMsg;

else;
xml-into custInfo %xml(stmf: 'path=result/cust doc= file');
dsply custInfo.name;
dsply custInfo.street;
dsply (custInfo.city + ' '

+ custInfo.state + ' '
+ custInfo.postal);

endif;

unlink(stmf);
*inlr = *on;

/end-free

181

Consume REST (3 of 3)

CALL MYCUST PARM(495)

DSPLY ANCO FOODS
DSPLY 1100 N.W. 33RD STREET
DSPLY POMPANO BEACH FL 33064-2121

CALL MYCUST PARM(123)

DSPLY Unknown Customer Number

When I run it like this:

It responds with:

When I run it like this:

It responds with:

182

Currency Exchange Example

In the first section of this seminar, we talked about currency exchange, and I showed you
what the SOAP messages for WebServiceX.net's currency exchange looked like.

Now it's time to try calling that web service from an RPG program!

Steps to writing a SOAP web service consumer with HTTPAPI:
• Get the WSDL

• Try the WSDL with SoapUI so you know what it looks like.

• Copy/paste the XML for the SOAP message into an RPG program.

► Convert to a big EVAL statement

► Insert any variable data at the right places

► Create one big string variable with XML data.

• Pass the SOAP message to HTTPAPI's http_post_xml() routine.

• Parse the XML you receive as a response.

183

SOAP Consumer (1/4)

H DFTACTGRP(*NO) BNDDIR('LIBHTTP/HTTPAPI')

D EXCHRATE PR ExtPgm('EXCHRATE')
D Country1 3A const
D Country2 3A const
D Amount 15P 5 const
D EXCHRATE PI
D Country1 3A const
D Country2 3A const
D Amount 15P 5 const

/copy libhttp/qrpglesrc,httpapi_h

D Incoming PR
D rate 8F
D depth 10I 0 value
D name 1024A varying const
D path 24576A varying const
D value 32767A varying const
D attrs * dim(32767)
D const options(*varsize)

D SOAP s 32767A varying
D rc s 10I 0
D rate s 8F
D Result s 12P 2
D msg s 50A
D wait s 1A

A program that
uses a Web

Service is called
a "Web Service

Consumer".

The act of calling
a Web service is

referred to as
"consuming a
web service."

184

SOAP Consumer (2/4)

/free
SOAP =

'<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>'
+'<SOAP:Envelope'
+' xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"'
+' xmlns:tns="http://www.webserviceX.NET/">'
+'<SOAP:Body>'
+' <tns:ConversionRate>'
+' <tns:FromCurrency>'+ %trim(Country1) +'</tns:FromCurrency>'
+' <tns:ToCurrency>'+ %trim(Country2) + '</tns:ToCurrency>'
+' </tns:ConversionRate>'
+'</SOAP:Body>'
+'</SOAP:Envelope>';

rc = http_post_xml(
'http://www.webservicex.net/CurrencyConvertor.asmx'

: %addr(SOAP) + 2
: %len(SOAP)
: *NULL
: %paddr(Incoming)
: %addr(rate)
: HTTP_TIMEOUT
: HTTP_USERAGENT
: 'text/xml'
: 'http://www.webserviceX.NET/ConversionRate');

Constructing the
SOAP message is

done with a big
EVAL statement.

This routine tells
HTTPAPI to send

the SOAP
message to a

Web server, and
to parse the XML

response.

As HTTPAPI receives the XML
document, it'll call the INCOMING

subpocedure for every XML
element, passing the "rate"

variable as a parameter.

185

SOAP Consumer (3/4)

if (rc <> 1);
msg = http_error();

else;
Result = %dech(Amount * rate: 12: 2);
msg = 'Result = ' + %char(Result);

endif;

dsply msg ' ' wait;

*inlr = *on;

/end-free

P Incoming B
D Incoming PI
D rate 8F
D depth 10I 0 value
D name 1024A varying const
D path 24576A varying const
D value 32767A varying const
D attrs * dim(32767)
D const options(*varsize)

/free
if (name = 'ConversionRateResult');

rate = %float(value);
endif;

/end-free
P E

If an error occurs,
ask HTTPAPI what

the error is.

Display the error
or result on the

screen.

This is called for
every XML element in

the response.

When the element is
a "Conversion Rate

Result" element,
save the value, since
it's the exchange rate

we're looking for!

186

SOAP Consumer (4/4)

Command Entry
Request level: 1

Previous commands and messages:
> call exchrate parm('USD' 'EUR' 185.50)

DSPLY Result = 133.69

Bottom
Type command, press Enter.
===>

F3=Exit F4=Prompt F9=Retrieve F10=Include det ailed messages
F11=Display full F12=Cancel F13=Information Assistant F24=More keys

Here's a sample of the output from calling the prec eding program:

187

What Just Happened?

HTTPAPI does not know how to create an XML document , but it does
know how to parse one.

In the previous example:

• The SOAP document was created in a variable using a big EVAL statement.
• The variable that contained the SOAP document was passed to HTTPAPI

and HTTPAPI sent it to the Web site.
• The subprocedure we called (http_post_xml) utilizes HTTPAPI's built-in

XML parser to parse the result as it comes over the wire.
• As each XML element is received, the Incoming() subprocedure is called.
• When that subprocedure finds a <ConversionRateResult> element, it

saves the element's value to the "rate" variable.
• When http_post_xml() has completed, the rate variable is set. You can

multiply the input currency amount by the rate to get the output currency
amount.

188

No! Let Me Parse It!

If you don't want to use HTTPAPI's XML parser, you can call the
http_url_post() API instead of http_post_xml() .

In that situation, the result will be saved to a stream file in the IFS, and you
can use another XML parser instead of the one in HTTPAPI.

. . .
rc = http_url_post(

'http://www.webservicex.net/CurrencyConvertor.asmx'
: %addr(SOAP) + 2
: %len(SOAP)
: '/tmp/CurrencyExchangeResult.soap'
: HTTP_TIMEOUT
: HTTP_USERAGENT
: 'text/xml'
: 'http://www.webserviceX.NET/ConversionRate');

. . .

For example, you may want to use RPG's built in support for XML in V5R4 to
parse the document rather than let HTTPAPI do it. (XML-SAX op-code)

189

Handling Errors with HTTPAPI

D http_error PR 80A
D peErrorNo 10I 0 options(*nopa ss)

Most of the HTTPAPI routines return 1 when successf ul
• Although this allows you to detect when something h as failed, it only tells

you that something failed, not what failed

• The http_error() routine can tell you an error number, a message, or both

• The following is the prototype for the http_error() API

if (rc <> 1);
msg = http_error();
// you can now print this message on the screen,
// or pass it back to a calling program,
// or whatever you like.

endif;

The human-readable message is particularly useful f or letting the user
know what's going on.

190

Handling Errors, continued…

The error number is useful when the program anticipates and tries to handle
certain errors.

if (rc <> 1);

http_error(errnum);

select;
when errnum = HTTP_NOTREG;

// app needs to be registered with DCM
exsr RegisterApp;

when errnum = HTTP_NDAUTH;
// site requires a userid/password
exsr RequestAuth;

other;
msg = http_error();

endsl;

endif;

These are constants that
are defined in

HTTPAPI_H (and
included with HTTPAPI)

191

WSDL2RPG

Instead of SoapUI, you might consider using WSDL2RPG – another open source
project, this one from Thomas Raddatz. You give WSDL2RPG the URL or IFS path of
a WSDL file, and it generates the RPG code to call HTTPAPI.

WSDL2RPG URL('/home/klemscot/CurrencyConvertor.wsdl ')
SRCFILE(LIBSCK/QRPGLESRC)
SRCMBR(CURRCONV)

Then compile CURRCONV as a module, and call it with the appropriate parameters.

• Code is still beta, needs more work.
• The RPG it generates often needs to be tweaked before it'll compile.
• The code it generates is much more complex than what you'd use if you generated it

yourself, or used SoapUI
• Can only do SOAP (not POX or REST)

But don't be afraid to help with the project! It'll be really nice when it's perfected!
http://www.tools400.de/English/Freeware/WSDL2RPG/wsdl2rpg.html

192

About SSL with HTTPAPI

The next example (UPS package tracking) requires that you connect using
SSL. (This is even more important when working with a bank!)

HTTPAPI supports SSL when you specify "https:" instead of "http:" at the
beginning of the URL.

It uses the SSL routines in the operating system, therefore you must have all
of the required software installed. IBM requires the following:

• Digital Certificate Manager (option 34 of OS/400, 57xx-SS1)

• TCP/IP Connectivity Utilities for iSeries (57xx-TC1)

• IBM HTTP Server for iSeries (57xx-DG1)

• IBM Developer Kit for Java (57xx-JV1)

• IBM Cryptographic Access Provider (5722-AC3) (pre-V5R4 only)

Because of (historical) import/export laws, 5722-AC3 is not shipped with OS/400.
However, it's a no-charge item. You just have to order it separately from your business
partner. It is included automatically in V5R4 and later as 57xx-NAE

193

UPS Example (slide 1 of 11)

This demonstrates the "UPS Tracking Tool" that's pa rt of UPS OnLine
Tools. There are a few differences between this an d the previous
example:

• You have to register with UPS to use their services (but it's free)

• You'll be given an access key, and you'll need to s end it with each
request.

• UPS requires SSL to access their web site.

• UPS does not use SOAP or WSDL for their Web service s – but does
use XML. Some folks call this "Plain Old XML" (POX).

• Instead of WSDL, they provide you with documentatio n that
explains the format of the XML messages.

• That document will be available from their web site after you've
signed up as a developer.

194

UPS Example (slide 2 of 11)

195

UPS Example (slide 3 of 11)

196

UPS Example (slide 4 of 11)

. . .

D UPS_USERID C '<put your userid here>'
D UPS_PASSWD C '<put your password here>'
D UPS_LICENSE C '<put your access license here>‘

. . .

d act s 10I 0
d activity ds qualified
d dim(10)
d Date 8A
d Time 6A
D Desc 20A
D City 20A
D State 2A
D Status 20A
D SignedBy 20A

. . .
// Ask user for tracking number.
exfmt TrackNo;

UPS provides these
when you sign up as a

developer.

197

UPS Example (slide 5 of 11)
postData =

'<?xml version="1.0"?>' +
'<AccessRequest xml:lang="en-US">' +

'<AccessLicenseNumber>' + UPS_LICENSE + '</AccessLicenseNumber>' +
'<UserId>' + UPS_USERID + '</UserId>' +
'<Password>' + UPS_PASSWD + '</Password>' +

'</AccessRequest>' +
'<?xml version="1.0"?>' +
'<TrackRequest xml:lang="en-US">' +

'<Request>' +
'<TransactionReference>' +

'<CustomerContext>Example 1</CustomerContext>' +
'<XpciVersion>1.0001</XpciVersion>' +

'</TransactionReference>' +
'<RequestAction>Track</RequestAction>' +
'<RequestOption>activity</RequestOption>' +

'</Request>' +
'<TrackingNumber>' + TrackingNo + '</TrackingNumber>' +

'</TrackRequest>' ;

rc = http_post_xml('https://wwwcie.ups.com/ups.app/xml/Track'
: %addr(postData) + 2
: %len(postData)
: %paddr(StartOfElement)
: %paddr(EndOfElement)
: *NULL);

if (rc <> 1);
msg = http_error();
// REPORT ERROR TO USER

endif;

The StartOfElement
and EndOfElement

routines are called while
http_post_xml is

running

198

UPS Example (slide 6 of 11)

. . .
for RRN = 1 to act;

monitor;
tempDate = %date(activity(RRN).date: *ISO0);
scDate = %char(tempDate: *USA);

on-error;
scDate = *blanks;

endmon;

monitor;
tempTime = %time(activity(RRN).time: *HMS0);
scTime = %char(tempTime: *HMS);

on-error;
scTime = *blanks;

endmon;

scDesc = activity(RRN).desc;
scCity = activity(RRN).city;
scState = activity(RRN).state;
scStatus = activity(RRN).status;

if (scSignedBy = *blanks);
scSignedBy = activity(RRN).SignedBy;

endif;

write SFLREC;
endfor;

. . .

Since the
StartOfElement and

EndOfElement routines
read the XML data and
put it in the array, when

http_post_xml is
complete, we're ready to

load the array into the
subfile.

199

UPS Example (slide 7 of 11)

<?xml version="1.0" ?>
<TrackResponse >

<Shipment >
. . .

<Package >
<Activity >

<ActivityLocation >
<Address >

<City >MILWAUKEE</City >
<StateProvinceCode >WI</ StateProvinceCode >
<PostalCode >53207</ PostalCode >
<CountryCode >US</ CountryCode >

</ Address >
<Code>AI</ Code>
<Description >DOCK</Description >
<SignedForByName >DENNIS</ SignedForByName >

</ ActivityLocation >
<Status >

<StatusType >
<Code>D</ Code>
<Description >DELIVERED</Description >

</ StatusType >
<StatusCode >

<Code>KB</ Code>
</ StatusCode >

</ Status >
<Date >20041109</ Date >
<Time >115400</ Time >

</ Activity >

This is what the
response from UPS will

look like.

HTTPAPI will call the
StartOfElemen t

procedure for every
"start" XML element.

HTTPAPI will call the
EndOfElement

procedure for every
"end" XML element. At
that time, it'll also pass

the value.

200

UPS Example (slide 8 of 11)

<Activity >
<ActivityLocation >

<Address >
<City >OAK CREEK</ City >
<StateProvinceCode >WI</ StateProvinceCode >
<CountryCode >US</ CountryCode >

</ Address >
</ ActivityLocation >
<Status >

<StatusType >
<Code>I </ Code>
<Description >OUT FOR DELIVERY</ Description >

</ StatusType >
<StatusCode >

<Code>DS</ Code>
</ StatusCode >

</ Status >
<Date >20041109 </ Date >
<Time >071000 </ Time >

</ Activity >
. . .
</ Package >

</ Shipment >
</ TrackResponse >

There are additional <Activity> sections and other XML that I omitted
because it was too long for the presentation.

201

UPS Example (slide 9 of 11)

P StartOfElement B
D StartOfElement PI
D UserData * value
D depth 10I 0 value
D name 1024A varying const
D path 24576A varying const
D attrs * dim(32767)
D const options(*varsize)

/free

if path = '/TrackResponse/Shipment/Package' and name='Activity';
act = act + 1;

endif;

/end-free
P E

This is called during http_post_xml() for each start element that UPS sends.
It's used to advance to the next array entry when a new package record is
received.

202

UPS Example (slide 10 of 11)
P EndOfElement B
D EndOfElement PI
D UserData * value
D depth 10I 0 value
D name 1024A varying const
D path 24576A varying const
D value 32767A varying const
D attrs * dim(32767)
D const options(*varsize)

/free

select;
when path = '/TrackResponse/Shipment/Package/Activity';

select;
when name = 'Date';

activity(act).Date = value;
when name = 'Time';

activity(act).Time = value;
endsl;

when path = '/TrackResponse/Shipment/Package/Activity' +
'/ActivityLocation';

select;
when name = 'Description';

activity(act).Desc = value;
when name = 'SignedForByName';

activity(act).SignedBy = value;
endsl;

This is called for each
ending value. We use it

to save the returned
package information

into an array.

Remember, this is called
by http_post_xml , so
it'll run before the code

that loads this array into
the subfile!

203

UPS Example (slide 11 of 11)

when path = '/TrackResponse/Shipment/Package/Activity' +
'/ActivityLocation/Address';

select;
when name = 'City';

activity(act).City = value;
when name = 'StateProvinceCode';

activity(act).State = value;
endsl;

when path = '/TrackResponse/Shipment/Package/Activity' +
'/Status/StatusType';

if name = 'Description';
activity(act).Status = value;

endif;

endsl;

/end-free
P E

204

Exercises

• Find a REST web service on the Internet, and try consuming it with HTTPAPI.

• Such as xurrency.

• I demonstrated POX by tracking a package with UPS. Try writing one that
consumes the POX RPG example from the "providing" section.

• I demonstrated SOAP with the WebServiceX.net currency exchange service.
Try writing a SOAP consumer that calls the GETCUST example from the
"providing" section.

205

HTTPAPI Information

You can download HTTPAPI from Scott's Web site:
http://www.scottklement.com/httpapi/

Latest beta version:
http://www.scottklement.com/httpapi/beta

Most of the documentation for HTTPAPI is in the source code itself.
• Read the comments in the HTTPAPI_H member
• Sample programs called EXAMPLE1 - EXAMPLE20

The best places to get help for HTTPAPI are:
• the FTPAPI/HTTPAPI mailing list

Signup: http://www.scottklement.com/mailman/listinfo/ftpapi
Archives: http://www.scottklement.com/archives/ftpapi/

• the System iNetwork Forums
http://www.systeminetwork.com/forums

206

More Information / Resources

Gaining a basic understanding of HTTP:

What Is HTTP, Really? (Scott Klement)
http://systeminetwork.com/article/what-http-really

What's the Difference Between a URI, URL, and Domai n Name? (Scott Klement)
http://www.systeminetwork.com/article/application-d evelopment/whats-the-

difference-between-a-uri-url-and-domain-name-65224

Gaining a basic understanding of Web Services & Ter minology:

Web Services: The Next Big Thing (Scott N. Gerard)
http://www.systeminetwork.com/article/other-languag es/web-services-the-next-

big-thing-13626

SOAP, WDSL, HTTP, XSD? What? (Aaron Bartell)
http://systeminetwork.com/article/soap-wdsl-http-xs d-what

207

More Information / Resources

w3schools.com -- free (and great!) site for learning web technolog y
XML: http://www.w3schools.com/xml/default.asp
Web Services: http://www.w3schools.com/webservices/default.asp
WSDL: http://www.w3schools.com/wsdl/default.asp
SOAP: http://www.w3schools.com/soap/default.asp

IBM's web site for the Integrated Web Services (IWS) tool:
http://www.ibm.com/systems/i/software/iws/
http://www.ibm.com/systems/i/software/iws/quickstar t_server.html

SoapUI home page
http://www.soapui.org

WSDL2RPG Home Page
http://www.tools400.de/English/Freeware/WSDL2RPG/ws dl2rpg.html

Call a Web Service with WDSL2RPG (Thomas Raddatz)
http://systeminetwork.com/article/call-web-service- wdsl2rpg

208

More Information / Resources

How-To Articles About Consuming/Providing Web Servi ces:

RPG Consumes the REST (Scott Klement)
http://systeminetwork.com/article/rpg-consumes-rest

RPG Consuming Web Services with HTTPAPI and SoapUI (Scott Klement)
http://systeminetwork.com/article/rpg-consuming-web -services-httpapi-and-soapui

IBM's Integrated Web Services (Scott Klement)
http://systeminetwork.com/article/ibms-integrated-w eb-services

Implementing PHP and RPG Web Services (Erwin Earley)
http://systeminetwork.com/article/implementing-php- and-rpg-web-services

Creating and Testing an RPG Web Service from WDSc (Jef Sutherland)
http://systeminetwork.com/article/creating-and-test ing-rpg-web-service-wdsc

UPS OnLine Tools
http://www.ups.com/e_comm_access/gettools_index

209

More Information / Resources
Sites that offer web service directories
• WebServiceX.net
• XMethods.net
• BindingPoint.com
• RemoteMethods.com

RPG's XML Opcodes & BIFs:

"Real World" Example of XML-INTO (Scott Klement)
http://systeminetwork.com/article/real-world-exampl e-xml

RPG's XML-SAX Opcode
http://systeminetwork.com/article/rpgs-xml-sax-opco de

PTFs for Version 6.1 Enhance RPG's XML-INTO
http://systeminetwork.com/article/ptfs-version-61-e nhance-rpgs-xml

XML-INTO: Maximum Length
http://systeminetwork.com/article/xml-maximum-lengt h

XML-INTO: Read XML Data Larger Than 65535
http://systeminetwork.com/article/xml-read-xml-data -larger-65535

XML-INTO: Output to Array Larger than 16 MB
http://systeminetwork.com/article/xml-output-array- larger-16-mb

210

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

The Sample Web Service Providers/Consumers in this article
are also available at the preceding link.

Thank you!

