Command Section

ARB(3)                 FreeBSD Library Functions Manual                 ARB(3)

NAME
     ARB_PROTOTYPE, ARB_PROTOTYPE_STATIC, ARB_PROTOTYPE_INSERT,
     ARB_PROTOTYPE_INSERT_COLOR, ARB_PROTOTYPE_REMOVE,
     ARB_PROTOTYPE_REMOVE_COLOR, ARB_PROTOTYPE_FIND, ARB_PROTOTYPE_NFIND,
     ARB_PROTOTYPE_NEXT, ARB_PROTOTYPE_PREV, ARB_PROTOTYPE_MINMAX,
     ARB_PROTOTYPE_REINSERT, ARB_GENERATE, ARB_GENERATE_STATIC,
     ARB_GENERATE_INSERT, ARB_GENERATE_INSERT_COLOR, ARB_GENERATE_REMOVE,
     ARB_GENERATE_REMOVE_COLOR, ARB_GENERATE_FIND, ARB_GENERATE_NFIND,
     ARB_GENERATE_NEXT, ARB_GENERATE_PREV, ARB_GENERATE_MINMAX,
     ARB_GENERATE_REINSERT, ARB8_ENTRY, ARB16_ENTRY, ARB32_ENTRY, ARB8_HEAD,
     ARB16_HEAD, ARB32_HEAD, ARB_ALLOCSIZE, ARB_INITIALIZER, ARB_ROOT,
     ARB_EMPTY, ARB_FULL, ARB_CURNODES, ARB_MAXNODES, ARB_NEXT, ARB_PREV,
     ARB_MIN, ARB_MAX, ARB_FIND, ARB_NFIND, ARB_LEFT, ARB_LEFTIDX, ARB_RIGHT,
     ARB_RIGHTIDX, ARB_PARENT, ARB_PARENTIDX, ARB_GETFREE, ARB_FREEIDX,
     ARB_FOREACH, ARB_FOREACH_FROM, ARB_FOREACH_SAFE, ARB_FOREACH_REVERSE,
     ARB_FOREACH_REVERSE_FROM, ARB_FOREACH_REVERSE_SAFE, ARB_INIT, ARB_INSERT,
     ARB_REMOVE, ARB_REINSERT, ARB_RESET_TREE - array-based red-black trees

SYNOPSIS
     #include <sys/arb.h>

     ARB_PROTOTYPE(NAME, TYPE, FIELD, CMP);

     ARB_PROTOTYPE_STATIC(NAME, TYPE, FIELD, CMP);

     ARB_PROTOTYPE_INSERT(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_INSERT_COLOR(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_REMOVE(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_REMOVE_COLOR(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_FIND(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_NFIND(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_NEXT(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_PREV(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_MINMAX(NAME, TYPE, ATTR);

     ARB_PROTOTYPE_REINSERT(NAME, TYPE, ATTR);

     ARB_GENERATE(NAME, TYPE, FIELD, CMP);

     ARB_GENERATE_STATIC(NAME, TYPE, FIELD, CMP);

     ARB_GENERATE_INSERT(NAME, TYPE, FIELD, CMP, ATTR);

     ARB_GENERATE_INSERT_COLOR(NAME, TYPE, FIELD, ATTR);

     ARB_GENERATE_REMOVE(NAME, TYPE, FIELD, ATTR);

     ARB_GENERATE_REMOVE_COLOR(NAME, TYPE, FIELD, ATTR);

     ARB_GENERATE_FIND(NAME, TYPE, FIELD, CMP, ATTR);

     ARB_GENERATE_NFIND(NAME, TYPE, FIELD, CMP, ATTR);

     ARB_GENERATE_NEXT(NAME, TYPE, FIELD, ATTR);

     ARB_GENERATE_PREV(NAME, TYPE, FIELD, ATTR);

     ARB_GENERATE_MINMAX(NAME, TYPE, FIELD, ATTR);

     ARB_GENERATE_REINSERT(NAME, TYPE, FIELD, CMP, ATTR);

     ARB<8|16|32>_ENTRY();

     ARB<8|16|32>_HEAD(HEADNAME, TYPE);

     size_t
     ARB_ALLOCSIZE(ARB_HEAD *head, int<8|16|32>_t maxnodes, struct TYPE *elm);

     ARB_INITIALIZER(ARB_HEAD *head, int<8|16|32>_t maxnodes);

     struct TYPE *
     ARB_ROOT(ARB_HEAD *head);

     bool
     ARB_EMPTY(ARB_HEAD *head);

     bool
     ARB_FULL(ARB_HEAD *head);

     int<8|16|32>_t
     ARB_CURNODES(ARB_HEAD *head);

     int<8|16|32>_t
     ARB_MAXNODES(ARB_HEAD *head);

     struct TYPE *
     ARB_NEXT(NAME, ARB_HEAD *head, struct TYPE *elm);

     struct TYPE *
     ARB_PREV(NAME, ARB_HEAD *head, struct TYPE *elm);

     struct TYPE *
     ARB_MIN(NAME, ARB_HEAD *head);

     struct TYPE *
     ARB_MAX(NAME, ARB_HEAD *head);

     struct TYPE *
     ARB_FIND(NAME, ARB_HEAD *head, struct TYPE *elm);

     struct TYPE *
     ARB_NFIND(NAME, ARB_HEAD *head, struct TYPE *elm);

     struct TYPE *
     ARB_LEFT(struct TYPE *elm, ARB_ENTRY NAME);

     int<8|16|32>_t
     ARB_LEFTIDX(struct TYPE *elm, ARB_ENTRY NAME);

     struct TYPE *
     ARB_RIGHT(struct TYPE *elm, ARB_ENTRY NAME);

     int<8|16|32>_t
     ARB_RIGHTIDX(struct TYPE *elm, ARB_ENTRY NAME);

     struct TYPE *
     ARB_PARENT(struct TYPE *elm, ARB_ENTRY NAME);

     int<8|16|32>_t
     ARB_PARENTIDX(struct TYPE *elm, ARB_ENTRY NAME);

     struct TYPE *
     ARB_GETFREE(ARB_HEAD *head, FIELD);

     int<8|16|32>_t
     ARB_FREEIDX(ARB_HEAD *head);

     ARB_FOREACH(VARNAME, NAME, ARB_HEAD *head);

     ARB_FOREACH_FROM(VARNAME, NAME, POS_VARNAME);

     ARB_FOREACH_SAFE(VARNAME, NAME, ARB_HEAD *head, TEMP_VARNAME);

     ARB_FOREACH_REVERSE(VARNAME, NAME, ARB_HEAD *head);

     ARB_FOREACH_REVERSE_FROM(VARNAME, NAME, POS_VARNAME);

     ARB_FOREACH_REVERSE_SAFE(VARNAME, NAME, ARB_HEAD *head, TEMP_VARNAME);

     void
     ARB_INIT(struct TYPE *elm, FIELD, ARB_HEAD *head,
         int<8|16|32>_t maxnodes);

     struct TYPE *
     ARB_INSERT(NAME, ARB_HEAD *head, struct TYPE *elm);

     struct TYPE *
     ARB_REMOVE(NAME, ARB_HEAD *head, struct TYPE *elm);

     struct TYPE *
     ARB_REINSERT(NAME, ARB_HEAD *head, struct TYPE *elm);

     void
     ARB_RESET_TREE(ARB_HEAD *head, NAME, int<8|16|32>_t maxnodes);

DESCRIPTION
     These macros define data structures for and array-based red-black trees.
     They use a single, continuous chunk of memory, and are useful e.g., when
     the tree needs to be transferred between userspace and kernel.

     In the macro definitions, TYPE is the name tag of a user defined
     structure that must contain a field of type ARB_ENTRY, named ENTRYNAME.
     The argument HEADNAME is the name tag of a user defined structure that
     must be declared using the ARB_HEAD() macro.  The argument NAME has to be
     a unique name prefix for every tree that is defined.

     The function prototypes are declared with ARB_PROTOTYPE(), or
     ARB_PROTOTYPE_STATIC().  The function bodies are generated with
     ARB_GENERATE(), or ARB_GENERATE_STATIC().  See the examples below for
     further explanation of how these macros are used.

     A red-black tree is a binary search tree with the node color as an extra
     attribute.  It fulfills a set of conditions:

           1.   Every search path from the root to a leaf consists of the same
                number of black nodes.

           2.   Each red node (except for the root) has a black parent.

           3.   Each leaf node is black.

     Every operation on a red-black tree is bounded as O(lg n).  The maximum
     height of a red-black tree is 2lg(n + 1).

     ARB_*() trees require entries to be allocated as an array, and uses array
     indices to link entries together.  The maximum number of ARB_*() tree
     entries is therefore constrained by the minimum of array size and choice
     of signed integer data type used to store array indices.  Use
     ARB_ALLOCSIZE() to compute the size of memory chunk to allocate.

     A red-black tree is headed by a structure defined by the ARB_HEAD()
     macro.  A structure is declared with either of the following:

           ARB<8|16|32>_HEAD(HEADNAME, TYPE) head;

     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be inserted into the tree.

     The ARB_HEAD() variant includes a suffix denoting the signed integer data
     type size (in bits) used to store array indices.  For example,
     ARB_HEAD8() creates a red-black tree head strucutre with 8-bit signed
     array indices capable of indexing up to 128 entries.

     The ARB_ENTRY() macro declares a structure that allows elements to be
     connected in the tree.  Similarly to the ARB<8|16|32>_HEAD() macro, the
     ARB_ENTRY() variant includes a suffix denoting the signed integer data
     type size (in bits) used to store array indices.  Entries should use the
     same number of bits as the tree head structure they will be linked into.

     In order to use the functions that manipulate the tree structure, their
     prototypes need to be declared with the ARB_PROTOTYPE() or
     ARB_PROTOTYPE_STATIC() macro, where NAME is a unique identifier for this
     particular tree.  The TYPE argument is the type of the structure that is
     being managed by the tree.  The FIELD argument is the name of the element
     defined by ARB_ENTRY().  Individual prototypes can be declared with
     ARB_PROTOTYPE_INSERT(), ARB_PROTOTYPE_INSERT_COLOR(),
     ARB_PROTOTYPE_REMOVE(), ARB_PROTOTYPE_REMOVE_COLOR(),
     ARB_PROTOTYPE_FIND(), ARB_PROTOTYPE_NFIND(), ARB_PROTOTYPE_NEXT(),
     ARB_PROTOTYPE_PREV(), ARB_PROTOTYPE_MINMAX(), and
     ARB_PROTOTYPE_REINSERT() in case not all functions are required.  The
     individual prototype macros expect NAME, TYPE, and ATTR arguments.  The
     ATTR argument must be empty for global functions or static for static
     functions.

     The function bodies are generated with the ARB_GENERATE() or
     ARB_GENERATE_STATIC() macro.  These macros take the same arguments as the
     ARB_PROTOTYPE() and ARB_PROTOTYPE_STATIC() macros, but should be used
     only once.  As an alternative individual function bodies are generated
     with the ARB_GENERATE_INSERT(), ARB_GENERATE_INSERT_COLOR(),
     ARB_GENERATE_REMOVE(), ARB_GENERATE_REMOVE_COLOR(), ARB_GENERATE_FIND(),
     ARB_GENERATE_NFIND(), ARB_GENERATE_NEXT(), ARB_GENERATE_PREV(),
     ARB_GENERATE_MINMAX(), and ARB_GENERATE_REINSERT() macros.

     Finally, the CMP argument is the name of a function used to compare tree
     nodes with each other.  The function takes two arguments of type struct
     TYPE *.  If the first argument is smaller than the second, the function
     returns a value smaller than zero.  If they are equal, the function
     returns zero.  Otherwise, it should return a value greater than zero.
     The compare function defines the order of the tree elements.

     The ARB_INIT() macro initializes the tree referenced by head, with the
     array length of maxnodes.

     The red-black tree can also be initialized statically by using the
     ARB_INITIALIZER() macro:

           ARB<8|16|32>_HEAD(HEADNAME, TYPE) head = ARB_INITIALIZER(&head,
           maxnodes);

     The ARB_INSERT() macro inserts the new element elm into the tree.

     The ARB_REMOVE() macro removes the element elm from the tree pointed by
     head.

     The ARB_FIND() and ARB_NFIND() macros can be used to find a particular
     element in the tree.

           struct TYPE find, *res;
           find.key = 30;
           res = ARB_FIND(NAME, head, &find);

     The ARB_ROOT(), ARB_MIN(), ARB_MAX(), ARB_NEXT(), and ARB_PREV() macros
     can be used to traverse the tree:

           for (np = ARB_MIN(NAME, &head); np != NULL; np = ARB_NEXT(NAME,
           &head, np))

     Or, for simplicity, one can use the ARB_FOREACH() or
     ARB_FOREACH_REVERSE() macro:

           ARB_FOREACH(np, NAME, head)

     The macros ARB_FOREACH_SAFE() and ARB_FOREACH_REVERSE_SAFE() traverse the
     tree referenced by head in a forward or reverse direction respectively,
     assigning each element in turn to np.  However, unlike their unsafe
     counterparts, they permit both the removal of np as well as freeing it
     from within the loop safely without interfering with the traversal.

     Both ARB_FOREACH_FROM() and ARB_FOREACH_REVERSE_FROM() may be used to
     continue an interrupted traversal in a forward or reverse direction
     respectively.  The head pointer is not required.  The pointer to the node
     from where to resume the traversal should be passed as their last
     argument, and will be overwritten to provide safe traversal.

     The ARB_EMPTY() macro should be used to check whether a red-black tree is
     empty.

     Given that ARB trees have an intrinsic upper bound on the number of
     entries, some ARB-specific additional macros are defined.  The ARB_FULL()
     macro returns a boolean indicating whether the current number of tree
     entries equals the tree's maximum.  The ARB_CURNODES() and ARB_MAXNODES()
     macros return the current and maximum number of entries respectively.
     The ARB_GETFREE() macro returns a pointer to the next free entry in the
     array of entries, ready to be linked into the tree.  The ARB_INSERT()
     returns NULL if the element was inserted in the tree successfully,
     otherwise they return a pointer to the element with the colliding key.

     Accordingly, ARB_REMOVE() returns the pointer to the removed element
     otherwise they return NULL to indicate an error.

     The ARB_REINSERT() macro updates the position of the element elm in the
     tree.  This must be called if a member of a tree is modified in a way
     that affects comparison, such as by modifying a node's key.  This is a
     lower overhead alternative to removing the element and reinserting it
     again.

     The ARB_RESET_TREE() macro discards the tree topology.  It does not
     modify embedded object values or the free list.

SEE ALSO
     queue(3), tree(3)

HISTORY
     The ARB macros first appeared in FreeBSD 13.0.

AUTHORS
     The ARB macros were implemented by Lawrence Stewart
     <lstewart@FreeBSD.org>, based on tree(3) macros written by
     Niels Provos.

FreeBSD 13.1-RELEASE-p6        October 14, 2019        FreeBSD 13.1-RELEASE-p6

Command Section

man2web Home...