
by
Scott Klement

A First Look at Physical Computing With Raspberry Pi

What?Two Raspberry Pi computers (with
my hand for comparison)

• Zero-W (approx. $10)

• 4B 4GB (approx. $60) The Raspberry Pi is a small, inexpensive,
energy efficient computer.

• Storage on microSD cards

• HDMI video/audio

• USB ports for keyboard/mouse

• Wired & Wifi Networking

• ARM-based CPU

• GPIO pins

Why?
Small, efficient, and inexpensive.

• Stick it under a table

• Back of a monitor

• Inside/above/under a cabinet

• Inside a vehicle

• …really, anywhere…

Use it to control electronics, and
interface with a bigger computer.

• Such as your PC

• Power Systems running IBM i

Write your own custom
application that controls the
GPIO pins, and make it do
whatever you want.

• Turn stuff on or off.

• Read sensors (temperature,
pressure, "eyes"/infrared,
cameras)

• Make conveyors move.

• Interface printers, scanners,
scales, industrial terminals…

• The possibilities are endless!

• Motors/Servos

• Ultrasonic sensors

• Solenoid valves

Show Me! Simple demonstration of

• Turn LEDs on/off.

• Turn Power (Lamp) on/off.

• Read a door sensor.

Imagine…
I demonstrated turning LEDs and
a light on/off.

Think of all of the other things
you could turn off!

And it's done by program logic, so
could be done under any logic
you can imagine.

Likewise, I demonstrated reading
from a switch.

Think of all of the other sensors
and devices you can read from.

Conveyor
There are cameras available that work well with
image detection software (such as OpenCV)

This project stops the conveyor belt when a nut
over a given size is detected at the end of the
conveyor. The worker could then remove the one
that's too large.

With servos you could build a robotic arm (or buy a
prebuilt one) that removes the nut. (Or any other
type of item.) -- not shown.

Sorting M&Ms
Sorts M&Ms by
color. Pretty cool,
to play with -- but
there are also
industrial uses for
it.

Programming
GPIO

In Node.js, I use the open source
onoff module to interact with
the gpio pins.

To turn one on, you simply write
1 to it. To turn it off, write 0.

var Gpio = require("onoff").Gpio;

var led = new Gpio(5, 'out');

// Turn on

led.writeSync(1);

// Turn off after 5 seconds

setTimeout(() => led.writeSync(0), 3000);

GPIO Toggle
In Raspberry Pi, you can read
from pin (even if in 'out' mode)

This makes it easy to toggle.

var Gpio = require("onoff").Gpio;

var relay = new Gpio(4, 'out');

function toggle() {

var currentValue = relay.readSync();

relay.writeSync(currentValue ^ 1);

}

toggle();

setTimeout(toggle, 3000);

Async Button
Naturally, you can read the same way you do a write.
But, how do you know when to read?

onoff provides a watch event that can fire a function
when the state of a button changes. It can be 'falling'
(switch closing), 'rising' (switch opening) or 'both'.

There's also a debounceTimeout to avoid the situation
where a button might open/close more than once rapidly.

var Gpio = require("onoff").Gpio;

var button = new Gpio(23, 'in', 'both',

{debounceTimeout: 10});

button.watch((err, value) => {

console.log((value===1) ? 'up':'down');

});

The End.The code to write the REST API and communicate
with RPG is too much to show you here.

But it is similar to any other REST API you might
code.

The entire code is on GitHub, if you want to see it.

https://github.com/ScottKlement/rpg-raspi-demo

Likewise, working with cameras, servos, ultrasonics,
and more is possible, but too much for a 20 minute
session. There's tons of examples and sample
projects online, though -- just google it!

Before you know it, you'll be interacting with the
physical world, doing physical computing.

