A First Look at Physical Computing With Raspberry Pi

by
Scott Klement

Two Raspberry Pi computers (with
my hand for c)(gmparisgn) W h a t?
« Zero-W (approx. $10)

. The Raspberry Piis a small, inexpensive,
4B 4GB (approx. $69) energy efficient computer.

 Storage on microSD cards

+ HDMI video/audio

« USB ports for keyboard/mouse
Wired & Wifi Networking
ARM-based CPU

GPIO pins

hyv?
Small, efficient, and inexpensive. Write your own custom W y *
« Stick it under a table application that controls the

GPIO pins, and make it do

whatever you want.

* Turn stuff on or off.

« Read sensors (temperature,
pressure, "eyes"/infrared,
cameras)

Make conveyors move.

. Interfac_e printers, scanners,
scales, industrial terminals...
Use it to control electronics, and

interface with a bigger computer. The possibilities are endless!
- Such as your PC * Motors/Servos
» Power Systems running IBM i * Ultrasonic sensors

* Solenoid valves

» Back of a monitor

* Inside/above/under a cabinet
* Inside a vehicle

+ ..really, anywhere...

Raspberry Pi

S h ow M e | Simple demonstration of

* Turn LEDs on/off.
» Turn Power (Lamp) on/off.
* Read a door sensor.

Imagine...

| demonstrated turning LEDs and
a light on/off.

Think of all of the other things
you could turn offl

And it's done by program logic, so
could be done under any logic
you can imagine.

Likewise, | demonstrated reading
from a switch.

Think of all of the other sensors
and devices you can read from.

Conveyor

There are cameras available that work well with
image detection software (such as OpenCV)

This project stops the conveyor belt when a nut
over a given size is detected at the end of the
conveyor. The worker could then remove the one
that's too large.

With servos you could build a robotic arm (or buy a
prebuilt one) that removes the nut. (Or any other
type of item.) -- not shown.

Sorts M&Ms by
color. Pretty cool,
to play with -- but
there are also
industrial uses for
it.

DEXTER yry

In Node.js, | use the open source
onoff module to interact with
the gpio pins.

To turn one on, you simply write
1 toit. To turn it off, write 0.

var Gpio = require("onoff").Gpio;
var led = new Gpio(5, 'out');

// Turn on
led.writeSync(1);

// Turn off after 5 seconds
setTimeout(() => led.writeSync(0), 3000);

Programming

3v3 Power

GPIO 2 (zc1s04)
GPIO 3 (ec1 scyy
GPIO 4 sreLkn

GPIO 17

GPIO 27

GPIO 22

3v3 Power

GPIO 10 (spo mosy
GPIO 9

GPIO 11 (spio scLi)
Ground

GPIO 0 (eeprom spay
GPIO 5

GPIO 6

GPIO 13 (pwm1y
GPIO 19 (pcurs)
GPIO 26

Ground

GPIO

Sv Power

Sv Power
Ground

GPIO 14 wart ™)
GPIO 15 uarTRxX)
GPIO 18 (pem cLk)
Ground

GPIO 23

GPIO 24

Ground

GPIO 25

GPIO 8 (spio ceny
GPIO 7 (spio ceny
GPIO 1 (eeprom scLy

2 Py

Gro 1
GPIO 1

GPI1O 20 (pcw oiny
GPIO 21 (pcw pouty

In Raspberry Pi, you can read
from pin (even if in 'out' mode)

This makes it easy to toggle.

var Gpio = require("onoff").Gpio;
var relay = new Gpio(4, 'out');

function toggle() {
var currentValue = relay.readSync();
relay.writeSync(currentValue ~ 1);

}

toggle();
setTimeout(toggle, 3000);

3v3 Power
GPIO 2 ¢ y
GPIO 3 (e2c1 501
GPIO 4 ¢

GPIO 17
GPIO 27
GPIO 22
3v3 Power
GPIO 10
GPIO

GPIO 13 (pwm1)
GPIO 19 pcuFs)
GPIO 26

GPIO Toggle

5v Power
5v Power

GPIO 14 (uarT T
GPIO 15 warT Ry
GPIO 18 pom ey

GPIO 23
GPIO 24

GPIO 25

GPIO 12 pwmoy

GPIO 16
GPIO 20 (pcw oy
GPIO 21 (pcu pouT)

Naturally, you can read the same way you do a write.
But, how do you know when to read?

onoff provides a watch event that can fire a function
when the state of a button changes. It can be 'falling'
(switch closing), 'rising' (switch opening) or 'both'.

There's also a debounceTimeout to avoid the situation
where a button might open/close more than once rapidly.

var Gpio = require("onoff").Gpio;

var button = new Gpio(23, 'in', 'both’,
{debounceTimeout: 10});

button.watch((err, value) => {
console.log((value===1) ? 'up':'down');

1)

3v3 Power
GPIO 2 et
GPIO 3 et
GPIO 4 &

GPIO 17
GPIO 27
GPIO 22
3Iv3 Power
GPIO 10

GPIO 11 (spo

GPIO 0 (eerron
GPIO 5

GPIO 6

GPIO 13)
GPIO 19 pemFs)
GPIO 26

Button

5v Power
5v Power

GPIO 14 w
GPIO 15 @
GPIO 18 (pcu cLk

GPIO 23
GPIO 24

GPIO 25

GPIO 12 pwmoy

GPIO 16
GPIO 20 pcu
GPIO 21 pcu

The code to write the REST APl and communicate
with RPG is too much to show you here.

But it is similar to any other REST APl you might
code.

The entire code is on GitHub, if you want to see it.
https://github.com/ScottKlement/rpg-raspi-demo

Likewise, working with cameras, servos, ultrasonics,
and more is possible, but too much for a 20 minute
session. There's tons of examples and sample
projects online, though -- just google it!

Before you know it, you'll be interacting with the
physical world, doing physical computing.

The End.

