
by
Scott Klement

Handling JSON with DATA-INTO and DATA-GEN in ILE RPG

Please open the session
survey for this session
(scan QR code) and be

ready to evaluate it.

Session Concept
When writing most REST API, you use JSON format. (In most cases, it has
replaced XML.)
Alternately, JSON is sometimes also sent/received to companies via other
means aside from APIs. But, in any case, you typically have these tasks
you need to handle:

1. Interpret/Read incoming JSON in a string or file.

2. Do your business logic (utilizing the data you got from the JSON)
3. Create an output JSON file to send back.

We won't discuss part 2 -- it's assumed that once the data is in variables in
your program, you know how to write your business logic -- that part is
just normal RPG business programming.

JSON and XML to Represent a DS
Array of data structures

in RPG…

Array of data structures
in JSON

Array of data structures
in XML

dcl-ds list qualified dim(2);
 custno packed(4: 0);
 name char(25);
end-ds;

[
 {
 "custno": 1000,
 "name": "ACME, Inc"
 },
 {
 "custno": 2000,
 "name": "Industrial Supply Limited"
 }
]

<list>
 <cust>
 <custno>1000</custno>
 <name>Acme, Inc</name>
 </cust>
 <cust>
 <custno>2000</custno>
 <name>Industrial Supply Limited</name>
 </cust>
</list>

That title slide, again.

Notice that they refer to each other
because they can be nested.

DATA-INTO
DATA-INTO is an RPG opcode that makes it easy to
process JSON in RPG.

Concept:
• Define an RPG variable (usually a data structure) that

matches the JSON document.

• Tell DATA-INTO where the JSON is, and where your RPG
variable is.

• It will map from the document to your variable.
• After that, then you can process it in your program the

same way you'd use any other RPG variable!

Mapping JSON Format

dcl-ds address;
 street varchar(30);
 city varchar(20);
 state char(2) ;
 postal varchar(10);
end-ds;

{
 "street": "123 Main Street",
 "city": "Anywhere",
 "state": "WI",
 "postal": "12345"
}

JSON format:
• The { } characters indicate an “object” (same as RPG data structure)
• The [] characters indicate an array
• Just as with XML, we can map them into an RPG structure

DATA-INTO Syntax
The DATA-INTO opcode syntax is:

DATA-INTO result %DATA(document[:options])
 %PARSER(parser[:options]);

%DATA options = optional parameter containing options passed to
RPG to control the reading of the JSON document, or how
it is mapped into variables

%PARSER options = optional parameter containing options passed
to the parser program. The syntax will vary depending on
the parser program.

%HANDLER = like XML-INTO, the DATA-INTO opcode supports a
handler. This was more widely used in IBM i 5.4 when
variable sizes were more limiting. I will not cover this today.

result = RPG variable (data structure) that data will be loaded into

document = the JSON document, or IFS path to the JSON document.

9

Why Do We Need a %PARSER?

DATA-INTO overcomes a big limitation we had in XML-INTO
• only works with XML!
• many (thousands) of other document types exist
• other formats used in business today include: YAML, CSV, JSON, XDR, Property List,

Pickle, OpenDDL, protobuf, OGDL, KMIP, FHIR, Feather, Arrow, EDN, CDR, Coifer, CBOR, Candle, Bond,
Bencode, D-Bus, ASN.1, HOCON, MessagePack, SCaViS, Smile, Thrift, VPack

DATA-INTO
• RPG won't try to understand the document
• Calls 3rd-party tool ("parser") which interprets the document
• ...but, DATA-INTO maps result into RPG variable
• ...all you need is the right parser to read any format!

YA JLINTO Parser
Example of DATA-INTO with YAJLINTO as the Parser:

DATA-INTO result %DATA('/tmp/example.json'
 : 'doc=file case=convert countprefix=num_')
 %PARSER('YAJLINTO');

result – the name of RPG data structure that I want to load the JSON
into. You can name it whatever you like on your DCL-DS.

/tmp/example.json - IFS path to the JSON document we generated
doc=file – tells RPG to read the document from a file (vs. a variable)
case=any – tells RPG that the upper/lower case of variable names

does not have to match the document
countprefix=num_ – any variables in the DS that start with "num_"

should receive counts of matching fields. For example,
"num_list" would give the number elements in the "list" array.

Basic JSON Example
Basic DATA-INTO example using YAJLINTO
dcl-ds address;
 street varchar(30);
 city varchar(20);
 state char(2) ;
 postal varchar(10);
end-ds;

myJSON = '{ +
 "street": "123 Example Street", +
 "city": "Milwaukee", +
 "state": "WI", +
 "postal": "53201-1234" +
 }';

data-into address %DATA(myJSON) %PARSER('YAJLINTO');

For simplicity, myJSON is a string built in the program. But, it could've
been a parameter, read from an API call, etc.

DATA-INTO Options
Specified as the 2nd parameter to %DATA to modify DATA-INTO behavior

• doc – controls where the document is read from string (default) or file.

• case – controls whether upper/lower case field names must match.

• allowmissing – allow elements in the document to be missing

• allowextra – allow extra elements in the document

• countprefix – ask data-into count the number of specified elements

• path – specifies the subset of the document to be read

• trim – remove extra whitespace from elements

• ccsid – specifies the CCSID passed to the parser

%DATA(myStmf:'put options here')

DOC Option
The default is doc=string (read from a string)

doc=file tells DATA-INTO to read the data from the IFS. The first
parameter to %DATA is now the IFS path name.

Imagine the "address" example (from the first example) was in
an IFS file named /home/scott/address.json

myStmf = '/home/scott/address.json';

data-into address %DATA(myStmf:'doc=file') %PARSER('YAJLINTO');

CASE Option
The default is case=lower

• lower = the fields in the document are all lowercase
• upper = the fields in the document are all uppercase
• any = treat the fields as case-insensitive (field names in

RPG and the document are converted to all uppercase
before comparing)

• convert = Like 'any', except that characters with
diacritics (such as accented characters) are converted
to their un-accented equivalents and other characters
(aside from A-Z, 0-9) are converted to underscores.

NOTE: In my experience it's unusual for the upper/lower
case of characters to matter. Since characters not allowed
in RPG (such as blanks and dashes) are often used in
documents such as JSON and XML, I almost always use
case=convert.

CASE Example
The following code will fail because "Postal" is not all lowercase.
Error: RNQ0356 The document for the DATA-INTO operation does not match the RPG variable.

dcl-ds address1;
 postal varchar(10);
end-ds;

myJSON = '{ "Postal": "53201-1234" }';
data-into address1 %DATA(myJSON) %PARSER('YAJLINTO');

myJSON = '{ "Postal": "53201-1234" }';
data-into address1 %DATA(myJSON:'case=convert') %PARSER('YAJLINTO');

dcl-ds address2;
 postal_code varchar(10);
end-ds;

myJSON = '{ "Postal Code": "53201-1234" }';
data-into address2 %DATA(myJSON:'case=convert') %PARSER('YAJLINTO');

It can be fixed by using case=any or case=convert. This works:

Likewise, case=convert works when the document has a field that isn't a valid RPG variable name:

CountPrefix Option (1 of 3)
CountPrefix creates a prefix used when counting document elements.

• by default, counting does not take place, so there is no default value.

To understand, imagine you receive the following "statement.json" file from a
vendor. It is a statement, telling what you owe for a given month.

{
 "customer": 5406,
 "statement date": "2018-10-05",
 "start date": "2018-09-01",
 "end date": "2018-09-30",
 "statement total": 6600.00,
 "invoices": [
 { "invoice": "99001", "amount": 1000.00, "date": "2018-09-14" },
 { "invoice": "99309", "amount": 1500.00, "date": "2018-09-18" },
 { "invoice": "99447", "amount": 500.00, "date": "2018-09-23" },
 { "invoice": "99764", "amount": 3600.00, "date": "2018-09-14" }
]
}

Now imagine the RPG code needed to read this….

Any field in my DS beginning with the prefix is NOT mapped from the
document, but instead is a count of a corresponding field.

Example: countprefix=total_, then total_XYZ is a count of the XYZ elements.

Or, for the invoice list:
dcl-ds statement qualified;
 customer packed(4: 0);
 statement_date char(10);
 start_date char(10);
 end_date char(10);
 statement_total packed(11: 2);
 num_invoices int(10);
 dcl-ds invoices dim(999);
 invoice char(5);
 amount packed(9: 2);
 date char(10);
 end-ds;
end-ds;

data-into statement %DATA('statement.json'
 :'doc=file case=convert ')
 %PARSER('YAJLINTO');

countprefix=num_

CountPrefix Option (2 of 3)

You can now use num_invoices to loop through the data. For example:

.

.
for x = 1 to statement.num_invoices;

 prinvn = statement.invoices(x).invoice;
 prdamt = statement.invoices(x).amount;
 prsdat = statement.invoices(x).date;
 write prrec;

endfor;
.
.

This example writes the fields to a database table (physical file).

This also illustrates the use of nested data structures/arrays. You separate
each nested level with a period and place the array index (the (x) above) on
the level that is an array.

CountPrefix Option (3 of 3)

CountPrefix For Optional Elements

NOTE: CountPrefix can be used to replace AllowMissing!

• When a counter defined, RPG will not issue an error if the
corresponding element is missing.

• Instead of an error, RPG will set the counter field to 0.
• Your code can then check the counter to determine if the field

did/didn't exist.

In most cases, this is a better option than the AllowMissing=yes option,
which can make it more difficult to understand mistakes in your RPG
DS.

(In fact, for that reason, I will not cover AllowMissing in this talk.)

%PARSER Options
The %PARSER function also has a space for options.

Options specified under %DATA are handled by DATA-INTO in the RPG
compiler itself.

Options on %PARSER are handled by the 3rd-party parser program and will
differ with each parser you use!

%PARSER Options:

• Can be coded as a string literal. Or can be an RPG variable.

• The parser determines the format of the parser options and what variable
type(s) it will accept.

DATA-INTO result %DATA(document[:options])
 %PARSER(parser[:options]);

YA JLINTO %PARSER Options
YAJLINTO expects:
• %parser options are passed as a small JSON document
• Must be a literal or an RPG character string variable
• If using a variable, it must be in job's CCSID (EBCDIC)
• No options are required – only specify the ones you need to use.

YAJLINTO's options are:
• document_name = a string representing the name of the document node (used

with the PATH option)
• value_true = value to place in RPG variable for a JSON boolean that is true.

(Default='1' – this is ideal if mapping to an RPG indicator.)
• value_false = value to place in RPG variable for a JSON boolean that is false.

(Default='0' – same reason.)
• value_null = value to place in RPG variable if the special value null is provided

for a field in the JSON document. (default: '*NULL')

data-into invoices %DATA('statement.json'
 : 'doc=file case=convert path=statement/invoices')

 %PARSER('YAJLINTO'
 : '{ +

 "value_true": "true", + (default is '1')
 "value_false": "false", + (default is '0')
 "value_null": "**NONE**", + (default is *NULL)
 "document_name": "statement" + (default is no name)
 }');

YA JLINTO with a web service
YAJLINTO has a special feature for writing web services:
• use this when RPG is called from Apache via ScriptAlias
• primarily for "do it yourself" style web services
• not for use with tools like Integrated Web Services or WebSphere

Since September 2018, YAJLINTO supports direct reading from
standard input by passing the special value *STDIN.

See Scott's other presentations for more information:
• Providing Web Services on IBM i (Do It Yourself section)
• Working with JSON in RPG

data-into result %DATA('*STDIN'
 : 'case=convert countprefix=num_')
 %PARSER('YAJLINTO');

DATA-GEN
DATA-GEN is an RPG opcode that makes it easy to create
a JSON document in RPG.

Concept:
• Define an RPG variable (usually a data structure) that

matches the JSON document.

• Tell DATA-GEN where the RPG variable is, and where
you want it to put the JSON document.

• It will make the document from your variable.

(It's like DATA-INTO, but in reverse!)

What?
For example:

{
 "name": "Scott Klement",
 "street": "8825 S Howell Avenue Ste 301",
 "city": "Oak Creek",
 "state": "WI",
 "postal": "53154"
}

How?
dcl-s Json varchar(1000);

dcl-ds address qualified;
 name varchar(30) inz('Scott Klement');
 street varchar(30) inz('8825 S Howell Avenue');
 city varchar(20) inz('Oak Creek');
 state char(2) inz('WI');
 postal varchar(10) inz('53154');
end-ds;

DATA-GEN address %DATA(Json) %GEN('YAJLDTAGEN');

Yeah. It's easy. DATA-GEN put the
document in the Json variable.

Why?Each JSON thing has an RPG
equivalent.
DATA-GEN makes the JSON thing
from the RPG thing.

{
 "sub field 1": 123.45,
 "sub field 2": "string goes here",
 "accepted": true,
 "days open": ["Monday", "Wednesday", "Friday"]
}

Characters Json Meaning RPG Equivalent
"string goes here" Character string CHAR or VARCHAR
123.45 Number Packed, Zoned, Int, Float, etc

true Boolean (true or false) Indicator (*ON or *OFF)
{ "field": "value" } Object Data Structure
[1, 2, 3] Array DIM

dcl-ds address qualified;
 name varchar(30);
 street varchar(30);
 city varchar(20);
 state char(2);
 postal varchar(10);
end-ds;

{
 "name": "string",
 "street": "string",
 "city": "string",
 "state": "string",
 "postal": "string"
}

Look AgainMakes JSON things from RPG
things.

Characters Json Meaning RPG Equivalent
"string goes here" Character string CHAR or VARCHAR

123.45 Number Packed, Zoned, Int, Float, etc
true Boolean (true or false) Indicator (*ON or *OFF)
{ "field": "value" } Object Data Structure

[1, 2, 3] Array DIM

DATA-GEN address %DATA(Json) %GEN('YAJLDTAGEN');

DATA-GEN SyntaxWhat the parts of DATA-GEN
mean and do.

DATA-GEN source-variable %DATA(result {: options}) %GEN(generator {: options});

• source-variable: RPG variable (usually a data structure) to generate the
structured document from.

• result: Specifies the result variable, either as a character variable
(default) or as an IFS pathname to write to.

• result options: Space-separated list of options that control how RPG
transfers data from your source variable into the result (more to come!)

• generator: Third-party program or service program that will generate the
document. The generator is what determines the format of the
document you're generating.

• generator options: Character literal or RPG variable that contains options
used by the generator. The format of this variable is defined by the
generator program and will be different for each generator you use.

%DATA OptionsMany options exist for %DATA.

Here are the most commonly
used ones.

• doc – controls where the document is generated string (default) or file.

• countprefix – control the number of specified elements generated

• renameprefix – lets you specify variables containing alternate names

for subfields.

%DATA(myStmf:'put options here')

Notice that doc and countprefix are (more or less) the same in DATA-GEN
as they were in DATA-INTO.

doc=file changes the first
parameter to %DATA to be an IFS
path name, then writes there.

Writing a File
dcl-s MyFile varchar(100);

MyFile = '/home/scott/address.json';
data-gen address %data(MyFile: 'doc=file') %gen('YAJLDTAGEN');

Variable Length ArraysHow to deal with variable-length
arrays? Example: An invoice has
a variable number of items on it.

dcl-ds invoice qualified;
 dcl-ds items dim(999);
 itemNo packed(5: 0);
 desc varchar(30);
 qty packed(5: 0);
 price packed(7: 2);
 end-ds;
end-ds;

{
 "items": [
 { "itemNo": 1001, "desc": "Some Description", "qty": 12, "price": 51.99 },
 { "itemNo": 1002, "desc": "Second Description", "qty": 6, "price": 94.10 },
 { "itemNo": 1003, "desc": "Third Description", "qty": 20, "price": 12.00 },
 { "itemNo": 1004, "desc": "Silly Things", "qty": 104, "price": 3.75 },
 { "itemNo": 1005, "desc": "Some other things", "qty": 3, "price": 101.06 }
]
}

A DS like this would be a
problem. It would output 999
elements.

CountPrefixHow to deal with variable-length
arrays? Example: An invoice has
a variable number of items on it.

dcl-ds invoice qualified;
 num_items int(10);
 dcl-ds items dim(999);
 itemNo packed(5: 0);
 desc varchar(30);
 qty packed(5: 0);
 price packed(7: 2);
 end-ds;
end-ds;

MyFile = '/home/scott/invoice.json';
data-gen invoice %data(MyFile: 'doc=file countprefix=num_') %gen('YAJLDTAGEN');

{
 "items": [
 { "itemNo": 1001, "desc": "Some Description", "qty": 12, "price": 51.99 },
 { "itemNo": 1002, "desc": "Second Description", "qty": 6, "price": 94.10 },
 { "itemNo": 1003, "desc": "Third Description", "qty": 20, "price": 12.00 },
 { "itemNo": 1004, "desc": "Silly Things", "qty": 104, "price": 3.75 },
 { "itemNo": 1005, "desc": "Some other things", "qty": 3, "price": 101.06 }
]
}

Any DS subfield prefixed by
num_ will be the count of
another element.

Special NamesWhen a name in a JSON
document isn't a possible RPG
field name…

dcl-ds address qualified;
 "customer name" varchar(30);
 "street address" varchar(30);
 city varchar(20);
 state char(2);
 postal varchar(10);
end-ds;

{
 "customer name": "string",
 "street address": "string",
 "city": "string",
 "state": "string",
 "postal": "string"
}

This will NOT work; RPG doesn't allow
spaces or quotes in a variable name:

RenamePrefixWhen a name in a JSON
document isn't a possible RPG
field name…

dcl-ds address qualified;
 name varchar(13);
 name_name varchar(30) inz('customer name');
 street varchar(30);
 name_street varchar(14) inz('street address');
 city varchar(20);
 state char(2);
 postal varchar(10);
end-ds;

data-gen invoice %data(MyFile: 'doc=file renameprefix=name_ ')
 %gen('YAJLDTAGEN');

{
 "customer name": "string",
 "street address": "string",
 "city": "string",
 "state": "string",
 "postal": "string"
}

Anything prefixed by name_
controls the output name of the
variable.

Questions?

• It's simple.
• But can be less simple (with lots

of options) when needed.
• Assuming you need to generate

a JSON document -- DATA-GEN
lets you do that.

• Thank you.

Scott Klement -
Handling JSON
with DATA-INTO
and DATA-GEN

in ILE RPG

Please take the last minute of this session to complete the
evaluation. A direct link to the evaluation can be found using the
QR code below.

