Parameters and Prototypes

R

Presented by

Scott Klement

http://www.scottklement.com

© 2006-2007, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’t.”

Who are you?

Scott Klement’s qualifications:

- Klement Sausage Co, Inc.
IT Manager and Senior Programmer
http://www.klements.com

- System INEWS magazine
Technical Editor (also, author)
http://www.iseriesnetwork.com

- System iNetwork Programming Tips

e-Newsletter Editor

http://www.iseriesnetwork.com/provipcenter/

- Speaker
User Groups, COMMON, and RPG Summit

- Award Winner
Recipient of a 2005 iSeries Innovation Award (by IBM and COMMON)
Recipient of the 2005 Gary Guthrie Award for Excellence in Technical Writing (by System INEWS)
ASBPE Awards 2006 Western Region Silver Medalist for Feature Series (RPG and the IFS)
COMMON Speaker of Merit

Why talk about parameters?

R

There are many reasons that parameters are an
important tool for today’s programmer.

. Parameters are the cornerstone of modern programming!
. Without parameters, ILE is nothing.
. Without parameters, Object-Oriented code doesn’t work.

. They are much more versatile than older techniques like the
LDA.

- Parameters are more important today than ever
before!

- Too many System i programmers don'’t
understand how parameters work!

. There are some recent features that are worth learning.

Two Way Parameters (1 of 2)

Parameters between programs are more valuable in i5/0OS than they are on a
Windows or Unix system because they let you pass data both ways. You can
use them to supply input values, but you can also use them to return information.

On other systems, they're input-only.

The two-way parameter is achieved using "shared memory".

When one program calls another, the only thing that's passed between them is
an address in the computer’'s memory where the parameter starts. Nothing else
is passed.

- Allows two-way.

- Is very efficient (only 16 bytes have to be passed)

Two Way Parameters (2 of 2)

Y our computer’s memory is shared by everything running on it, so the operating system has
to keep track of which spaces are in use, and which ones are available.

PGM The DCL statement asks
DCL VAR(&WYNBR) TYPE(*DEC) LEN(5 0) eony The DS roplics
CHGVAR VAR(&MYNBR) VALUE(54321) with an “address 1000"
CALL PGM TESTPGM) PARM &MYNBR)

ENDPGM

The PARM statement tells
TESTPGM that there’'s one

957 1958 Y 095" o ¢ dovi | looa | 10031 16047 7605} | Parameter, and that it'sin

0 2 4 location 1000.
| | [1 [3 [F | | |
PGM PARM &COOLNUM .
DCL VAR(&COOLNUM TYPE(*DEC) LEN(5 0) The & COOLNUM varigble
CHGVAR VAR(&COOLNUM) VALUE(1234) IS put in address 1000
because it's in the space
ey provided for parameter one.

Since the first program is till referencing area 1000, it sees the new value.

What about the command line?

K

If parameters are passed by sharing the address of the variables, what happens
= When you call from a command line, where there aren't variables?
= When you pass a literal on the CALL statement?

= When you use an API like QCMDEXC where all the parameters are together in
one variable?

CALL PGM TESTPGV) PARM 18)
CALL PGM TESTPGV) PARM ' WONKAVI S| ON)

72 The operating system creates temporary variables for your parameters.
It passes the addresses of those temporary variables.
72 Since you didn't specify any variable size, it makes one up according to
these rules:
1. Numeric variables are always "packed" (* DEC) and 15,5
2. Character variables are 32 chars long, and padded with blanks
3. If acharacter variable is more than 32 bytes, the exact length of the parameter valueis
used.

N

Command Line Examples (1/2)

Remember, it will ask the operating system for memory, just as a variable did.

Numberswill be 15,5
CALL PGV TESTPGV) PARM 18) (Positions 1000-1007)

Thisstring is 5 charslong,
s0 QCMD will ask for 32
characters, the first 5 will

CALL PGM TESTPGM) PARM' HELLO) be HELL O, the remaining
27 will be blank.

(Pos 1000-1031)

This string is 38 charslong,

i and so will be a38
CALL PGV TESTPGM PARM' A VERY VERY VERY VERY character parameter with no
VERY LONG STRI NG) padding.

(Pos 1000-1037)

Command Line Examples (2/2)

®)

>

This Il work from the

PGM PARM &VBG) command line, since 30 is
DCL VAR(&VBG TYPE(*CHAR) LEN(30) less than 32.
SNDMSG MBGE &MSG) TOUSR(QSYSOPR)

ENDPGMI

PGV PARM &VBG) This might be a problem,

since 80 is more than 32.

*
DCL VAR(&VBG TYPE(*CHAR) LEN(80) Y ou have to type at least 80
SNDPGWBG MBG D(CPF9897) TOMBGY *EXT) + characters (not including
trailing spaces) or you'll be
MBGTYPE(* STATUS) MSGDTA(&VBG) viewing memory that's not
ENDPGM part of what was passed

from the command line.

Look Out, It's a Trick!

FQSYSPRT O F 132 PRI NTER
D Data ds .
D Name 10A Position 1000-1009
D Address 304 Position 1010-1039
c call ' GETNAME'
c parm Nane
c except
eval *inlr = *on

OBYSPRT E
@) ''Nane='
(6} Narme
O +3 ‘' Address='
Q Addr ess

Nanme=Scott C Kl Addr ess=enent
DU NaIe S TI5A
C * ENTRY PLI ST
(o] PARM Narme Position 1000-1014
C eval Nane = ' Scott C Kl enent'
o return 9

Like a Data Structure?

A data structure isn’t actually used by the operating system. However,
thinking of it thisway might make it easier to understand. Think of your
computer’s memory as one big data structure (billions of byteslong!)

D Mai nSt or age ds

.... lots of other stuff here....
D pgnl_data 1000 1039
D pgnl_nane 1000 1009
D pgnl_address 1010 1039
D pgn2 nane 1000 1014

.... lots of other stuff here....

The Problem

| deliberately used a data structure for name and address so | could cont
the memory that followed the name parameter. What if | hadn’t done that?
What would’ve been in positions 1010-1014?

* Maybe unused memory (problem goes unnoticed!)
* Maybe another variable in my program.

* Maybe a variable in another program!

* Maybe a variable used by the operating system!

* Maybe memory that I'm not allowed to use!

WHY DIDN'T IT WARN ME?

How could it? Each program doesn’t know how the other program
works! They can’t read each other’s code... = Remember, the only

thing they pass to one another is an address! u

The Solution

The solution is to code the “GETNAME” program with a
program interface and prototype.

A Program/Procedure Interface (PI) is:

e Like an *ENTRY PLI ST (but better!)

* Requires a matching prototype to work.
* The replacement for * ENTRY PLI ST in free-format.

A Prototype (PR) is:

- A “blueprint” for making a call.

- It contains the name of the program to be called.

- It tells the compiler which parameters that program needs.
- The compiler can then make sure that the parms match.

The prototype helps make the calling of a program self-documenting.

A prototype also adds a lot of “convienience” functionality, as I'll demonstrate in a bit.

All of IBM’s new functionality related to parms since V3R2 has gone into prototypes!
12

Saved by the Prototype

One member for the prototype (SOURCELIB/PROTOTYPE,GETNAME)

D Get Nane PR Ext Pgn(‘' GETNAME')
D name 15A

The prototype must match the Program Interface (PI) in the program:

/ copy sourcelib/prototypes, get nane

D Get Nane Pl

D Nane 15A

C eval Nane = ' Scott C Klenent'
(¢ return

If the caller uses the prototype, it'll protect him from mistakes:

/ copy sourcelib/prototypes, get name

D Dat a ds

RNF7535 The type and attributes of paraneter 1 do not
mat ch those of the prototype.

c . callp Get Nane(Nane) 13

Prototypes for Programs

A prototype is very much like a parameter list (PLIST), but is newer and
has a lot of additional features. You can use a prototype to call a
program, a subprocedure, or a Java class.

—— D Cal cTax PR EXTPGM* CALCTAX') +—
D State st A
D Amount 9P 2%

Prototype Name First Parameter Second Parameter Program Name

Prototype name

This is the name you'll use when using the prototype to make a call. By default, it's also the
name of the subprocedure that it calls. Add EXTPGM to make it call a program.

- First Parameter
The first parameter to the procedure (name is for documentation, no variable is declared.)

Second Parameter

You can have as many parameters as you like, from 0-255 to a program, or 0-399 to a
procedure.

External Program Name 14

Calling Older Programs

R

You can use prototypes to call RPG lll programs, RPG IV programs that still use
*ENTRY PLIST, or even programs written in other languages (CL, COBOL, C).

You only need a PI
for input *ENTRY

D Getlp PR Ext Pgn(‘ GETI P’)
D Devi ce 10A
D Address 15A \
D MyDev S 10A
D MyAddr s 15A
Ifree
MyDev = ' DSPO1’ ;
call p Getlp(MyDev : M/Addr);
/end-free

PLIST) parameters,
not when calling
something else.

That'll work even though GETIP is a CL program. It would also work if GETIP
was an RPG program that used *ENTRY PLIST (in RPG Il or RPG IV).

15

Introducing CONST

When you specify CONST, the compiler won't let you change the value of the
parameter during the call.

FPRI CELI ST | F E K DI SK

/ copy prototypes,getPrice

D GetPrice Pl

D It enmNo 5P 0 const
D Zone 1A const
D Price 9P 2

/free
chain (ItenNo: Zone) PRI CELI ST;

if % ound;

Make sureyou add
CONST tothecode
in the/COPY aswell.

.

Price = plPrice;
el se; /
ltemNo = -1;
endi f;
return;
/end-free

Oops, | typed
ItemNo instead of
Price. But, because
of CONST thiswon’t
compile!

CONST also helps make it self-documenting. You can see which are input and which are

output, since the input-only parameters have CONST.

16

CONST Convienience (1/2)

When the compiler knows that a parameter is input-only, it's able to do some
extra work for you.

D GetPrice PR Ext Pgm(‘* GETPRI CE')
D It emNo 5P 0 const
D Zone 1A const
D Price 9P 2
D Tenpltem s 5P 0
D TenpZone S 1A
D nyPrice S 9P 2
Without CONST:

Tenpltem = 1234;
TenpZone = ‘A" ;
Get Price(Tenpltem TenpZone: nyPrice);

With CONST:
GetPrice (1234 : 'A: nyPrice);

You can pass a literal value instead of a variable when you use CONST. The compiler will
automatically create a temporary variable, store your literal in it, and pass the temporary
variable.

17

CONST Convienience (2/2)

You can even pass an expression. It will be calculated, stored in a
temporary variable, and that temporary variable will be passed:

D Cal cTax PR Ext Pgm(* CALCTAX')
D Subtotal 11P 2 const
D Region 3A const
D Total 11P 2
D TenpVar S 11P 2
Without CONST:

TenpVar = Total Cost — Discounts;
Cal cTax(TenpVar : Region: Total);

With CONST:
Cal cTax(Total Cost - Discounts : Region: Total);

Or the output of a BIF or subprocedure:

BIF Example:
OpenFile(%rimLibrary) + /' + %rimFile));

Subprocedure Example:
LogError(getErrorMsg (errorNo));

18

What if | don’'t want a fixed-size?

Occasionally you want to write a program that will work with any size string
that RPG supports. For example, what if you want to write a program that'll
center text in a string, no matter how long?

D Center PR Ext Pgm(' CTROO1R4")
D String 65535A options(*varsize)
D Length 15P 5 const
OPTI ONS(* VARSI ZE) disables the
/ copy prototypes, center compiler’s check that you've
D Center Pl : | passed along enough string.
D String 65535A options(*varSily
D Length 15P 5 const
D len s 101 0
Dtrimen S 101 O
D start S 101 O
D Save S 65535A varying
With options(*VARSI ZE), it's
[free up to you to ensure that you
len = Length; don’t access memory that you
Save = %rin(%ubst(String:1:Len)); aren't allowed to access. So, be
trimen = % en(Save); extra careful when you use this!
start = len/2 - trimen/2 + 1; I
Ysubst (String:1:1en) = *bl anks;
9%subst (String:start:trimen) = Save; Tip: Ext Pgmcan help when
return; you're stuck with an ugly
lend-free naming convention!

Calling *VARSIZE from CL

As mentioned earlier, you can call programs with PR/PI from older programs
or other languages. The prototype is nice to have, but it's not required when
making a call.

PGM
DCL VAR(&TEST) TYPE(*CHAR) LEN(80)

CHGVAR VAR(&TEST) VALUE(‘ CENTER THI S')
CALL PGM CTROO1R4) PARM &TEST 80)

SNDPGWEG AMBG D CPF9897) MBGF(QCPRMBG) MBGTYPE(* COVP) +

MSGDTA(&TEST)
ENDPGM
Since there aren't Since there’ sno variable
prototypesin CL, you declared, CL’sliterals use
have to use the the same rules for
externa name. determining the variable

size asthe command line
does. Numbers are 15,5,
characters are 32 long. 20

Calling *VARSIZE from RPG

Using the prototype makes it easier to read, and lets you use BIFs,
expressions and other tools to make the code easier to write and maintain.

D Center PR Ext Pgnm(’ CTROO1R4')
D String 65535A options(*varsize)
D Length 15P 5 const

/ copy prototypes, center
D ErrNsg S 50A
Ifree

ErrMsg = 'lnvalid Account Nunber';
center(ErrMg: %ize(ErrMsg));

exfnt Screen7;
Mgk s on:

/end-free

name when using
CALLP.

Always use the prototype Because the 2 parmis
& prototyp CONST, aBIF can be used
to calculate the variable size.

21

What about optional parms?

I's common to use optional parameters in RPG. They're especially useful
when functionality needs to be added to a program without breaking
backward-compatibility.

What if you start doing business internationally, and need the GETPRICE
program to return the prices in different currencies? EXxisting programs are

fine, but new ones might pass a parameter for the currency type.

This is how that was done with *ENTRY PLIST:

(6 *ENTRY PLI ST

C PARM | t enNo

Cc PARM Zone

C PARM Price

C PARM oCurrency
(o if Yparnms >= 4

c eval Currency = oCurrency

c el se

c eval Currency = 'us'

c endi f

22

Options(*nopass)

Making a parameter optional in a prototype can be done the same way you
did it before, if you use opt i ons(* nopass)

/ copy prototypes,getprice
D GetPrice PI
D ItemNo 5P 0 const Remember to add this parm in the
D Zone 1A const / /COPY member as well!
D Price 9P 2
D oCurrency 32A const options(*nopass)
D Currency S l'i ke(oCuKr ency)
/free
if Y%arnms >= 4; OPTIONS(*NOPASS) means that
Currency = oCurrency, the caller doesn’t have to add this
el se; parm in order to call this program.
Currency = 'us'; N
endif: NOPASS parameters must be at
the end of the parameter list.
Once you've declared one, any
parameters after it must also be
Tip: You can include more than one “options” value on a *NOPASS.
parameter by separating them with colons.
options(*nopass: *varsi ze) 23

Options(*omit)

A parameter can be declared as “omissible” with options(*omit). Strange as
it may sound, this doesn’t mean that you don’t have to pass the parameter!
What it means is that you can pass a special value of *OMIT instead of a

variable.
lcopy prototypes,getprice
D GetPrice Pl
D ItemNo 5P 0 const
D oZone 1A const options(*onit)
D Price 9P 2
D oCurrency 32A const
D options(*nopass:*omt)

D Currency s like(oQurrency) When a caller passes *OMIT, the
B Zone s Like(oZone) address passed for the parameter
1 *|
Ifree is set to *NULL.
if %ddr(0Zone) = *NULL;

Zone = '"A';
el se;
Zone = oZone;

dif;
- / When both *NOPASS and *OMIT
if Yarnms < 4 or Y%addr(oCurrency)=*NULL; are specified, you must first check

Currency = 'US'; for *NOPASS, and only check
el se; *OMIT if the parm was passed.
Currency = oCurrency;
endi f; |

24

Calling *NOPASS and *OMIT

R

Calling a program that uses *NOPASS and *OMIT is easy when you use a
prototype.

/copy prototypes, getprice

Ifree
GetPrice(54321 : ‘B : nyPrice);
GetPrice(54321 : *omt: nyPrice);
GetPrice(54321 : 'A: nyPrice: 'Canada');

GetPrice(12345 : *omt: nyPrice: ‘WK);

GetPrice(12345 : *omt: nyPrice: *omt);

Without a prototype, you can’'t use *OMIT (unless you're calling a
subprocedure), but you can still use *NOPASS simply by passing fewer
parameters.

25

Options(*RIGHTADJ)

K

Opti ons(*RI GHTADJ) can be used to tell the compiler to right-adjust a
CONST parameter value. (Requires V4R4 or later.)

D MyProgram PR Ext Pgnm(* MYPGM)
D Parml 20A const options(*Ri ght Adj)

/ copy prototypes, M/Program
lfree

MyProgram(‘ Patio Daddio’);

/ copy prototypes, M/Program

D MyProgram Pl
D Parm 20A const options(*Ri ght Adj)
[free
. Parnl now contains * Patio Daddio” . . .

Sadly, | haven’t found a practical use for this feature. 26

Options(*TRIM)

Options(*TRI'M can be used to tell the compiler to remove leading and
trailing blanks for a CONST parameter value. (Requires V5R3 or later)

D Joi nNane PR Ext Pgn(‘' JO NNAME')

D First 30A varying const options(*trim
D Last 30A varying const options(*trim
D Wol eNane 50A

/ copy prototypes,joi nname

D Scot t s 20A inz(' Scott ')

D Kl enent 5 20A inz(' Kenent ')

D Wol e s 50A

Ifree

Joi nNane(Scott: Kl enent: Wole);
11 result is: “Kl enent, Scott

/ copy prototypes,joi nname

D Joi nNare PI

D First 30A varying const options(*trim
D Last 30A varying const options(*trim
D Wol eName 50A

Ifree

/1 1t's not necessary to trimblanks, because the
/1 conpiler has done it for us.
Whol enane = Last + ', ' + First;
return;
lend-free

27

Options(*NULLIND)

Options(*NULLI ND) tells the system that you want to pass null
indicators with a database field. (Requires V5R4 or later)

Without *NULLIND, if a null-capable database field is passed, the called
program (or procedure) doesn’t know if is set to null or not, and can’t
change whether it’s null or not.

D SoneProgram PR Ext Pgn(‘ SOVEPGM)
D InvDate D options(*nullind)

/ copy prototypes, SomePgm
D SoneProgram Pl
D InvDate D options(*nullind)
Ifree
if 9%ullind(lnvDate);
%wul | ind(1 nvDate) = *OFF;
InvDate = %date();
el se;
/1 Al ready invoiced.
endif;
return;
/end-free

Warning: This is how | expect *NULLIND to work, but | haven’t had a chance to
test a V5R4 system yet, so | may be wrong! 28

Prototypes & External Definitions

Q: I prefer to use an externally defined file as a “data dictionary”. How can |
use an external field definition on a prototype?

A: Use LIKE to define the fields in the prototype. Put an externally defined
data structure into your /COPY member so you have an external definition
to reference.

** Pull in the external definitions for the CUSTMAS file

D CUSTMAS t E DS Ext Nanme(¢ CUSTMAS')

D qualified

D based(Tenpl ate Only)
D Get Cust Addr PR Ext Pgm(‘* CUSTADDR)

D CustNo l'i ke(CUSTMAS t . custno)
D const

D CustNanme i ke(CUSTMAS t. nane)
D Cust Addr l'i ke(CUSTMAS t. addr)
D CustCity i ke(CUSTMAS t.city)

D CustState l'i ke(CUSTMAS t. state)
D CustZp i ke(CUSTMAS t. zi pCode)

29

Data Structures (V5R1+)

Q: Can | pass a data structure using a prototype?

A: You can use LIKEDS to pass a data structure in V5R1 or later.

D MyData DS
D Fieldl 10A
D Field2 7P 4

D Exanpl e PR Ext Pgn(‘ EXAMPLE’)
D DataStruct l'i keds(MyDat a)

/free
cal |l p Exanpl e(My/Dat a) ;

Inside the EXAMPLE program:

/ copy prototypes, exanpl e

D Exanpl e Pl
D DataStruct I i keds(MyDat a)
Ifree

DataStruct.Fieldl = ‘ PARM 1 DATA';

Dat aStruct.Fiel d2 = 19.3412

30

Data Structures (pre-V5R1)

A: If you don’t have V5R1, you have to use LIKE with pointer logic. (sorry!)

D WyData DS
D Fieldl 10A
D Field2 7P 4
D Exanpl e PR Ext Pgn(‘' EXAMPLE’)
D DataStruct i ke(MyDat a)
/free

cal | p Exanpl e(MyDat a) ;

Inside the EXAMPLE program:

/ copy prototypes, exanpl e
D Exanpl e PI
D DataStruct I i ke(MyDat a)
D Local Version DS based(p_data)
D Fieldl 10A
D Fiel d2 7P 4
Ifree
p_data = %addr (DataStruct);
Fieldl = ‘ PARM 1 DATA';
Fiel d2 = 19.3412; 31

Multiple Occurrence DS

This also must be done with pointer logic. Make sure you always pass the
first occurrence if you want the whole DS to be passed.

D WyDat a DS occur s(10)
D Fieldl 10A
D Field2 7P 4
D Exanpl e PR Ext Pgn(‘ EXAVPLE')
D DataStruct i ke(MyDat a)
Ifree

Yoccur(MWData) = 1;

cal | p Exanpl e(MDat a);

Inside the EXAMPLE program:

/ copy prototypes, exanpl e
D Exanpl e Pl
D DataStruct I'i ke(MyDat a)
D Local Version DS based(p_dat a)
D occur s(10)
D Fieldl 10A
D Field2 7P 4
/free
p_data = %ddr(DataStruct);
for x =1 to 10;
Y%occur (Local Version) = x;
Fieldl = ' PARM 1 DATA';
Field2 = 19.3412; 32
endfor;

Arrays (1 of 2)

To pass an array, simply code a DIM keyword on the prototype definition:

D Mont hs s 15P 2 din(12)
D LoadSal esMon PR Ext Pgm(' MONSALES')
D Data 15P 2 din(12)
/free
call p LoadSal esMon(Mont hs) ;

Inside the MONSALES program:

/ copy prototypes, MonSal es
D LoadSal esMon Pl
D Data 15P 2 din(12)

/free
for month =1 to 12;
chain nonth MbnthSal es;

if 9% ound;
Dat a(month) = nsTot al ;
el se;
Dat a(nonth) = O;
endif;
endf or; 33

Arrays (2 of 2)

You can use opt i ons(* VARSI ZE) if you want to write a program that can
work with different sizes of arrays:

D LoadSf | Page Pl

D CustNo 4P 0 const

D PageSi ze 2P 0 const

D OderNo 5A din(99) options(*varsize)
D OdbDate D dim99) options(*varsize)
D ShipTo 25A din(99) options(*varsize)
D Total 11P 2 din(99) options(*varsize)
/free

for x = 1 to PageSi ze;

reade (CustNo) ORDERFIL;

if %of;

Leave;
endi f;
OrderNo(x) = of Order;
O dDat e(x) = of Dat e;
Shi pTo(x) = of ShipDs;
Tot al (x) = of Total ;

endfor;

Some programs may call this with a 5 element array. Others with a 20
element. Web applications might want to read 80 or 90 at a time. 34

Prototypes and Subprocedures

Prototypes can also be used to call Java methods and ILE Subprocedures.
There are additional keywords that you can use with those.

- OPDESC

Pass an operational descriptor (prototype-level)

- EXTPROC

Provide a separate external name for the subprocedure. This also provides the ability to
adjust calling conventions for C, CL or Java. (Prototype-level)

- VALUE

Pass a parameter by VALUE instead of passing it's address (Parameter level)

Return values:
Subprocedures can return a value that can be used in an expression. This is
also part of the prototype.

35

Not Associated with Prototypes

The following are NOT prototype keywords, but are commonly confused with
them. These are all data types:

- VARYING
Varying is a data type. You can specify it on a prototype, just as you'd specify packed, zoned
or data data types. It does not affect how the prototype works, but rather defines the data
type of one of the parameters. (Just as it does when used on a stand alone variable
declaration.)

- PROCPTR

Specifies that a pointer points to a procedure, rather than data. It's a specific type of pointer.

- CLASS

Specifies which class a Java object reference belongs to. Again, this helps clarify the data
type of the object that you must pass as a parameter. It's a data type, not a prototype
keyword.

36

This Presentation

You can download a PDF copy of this presentation from:

http://www.scottklement.com/presentations/

Thank you!

37

R

