
Working with JSON in RPG

Presented by

Scott Klement
http://www.scottklement.com

© 2014-2023, Scott Klement

"A computer once beat me at chess, but it was no match
for me at kick boxing." — Emo Philips

(YAJL Open Source JSON Tool)

2

The Agenda

1. What is JSON?
• Why use JSON?
• Syntax Overview

2. The YAJL JSON reader/writer
• Why YAJL?
• Scott's RPG interface

3. Generating JSON in RPG Code
• Example

4. Reading JSON in RPG Code
• Example with DATA-INTO
• Example with YAJL subprocedures

Agenda for this session:

3

Ugggh, Another Thing to Learn!

This is pretty much how I felt about JSON at first!
• ugggh, I just learned XML. Do I need to learn something new?!
• But, as I learned more, I started to love it.
• Now I much prefer JSON over XML.

4

Much Like XML

JSON is a format for encapsulating data as it's sent over networks
Much Like XML.

JSON is self-describing (field names are in the data itself) and human-readable.
Much Like XML

Very popular in Web Services and AJAX
Much Like XML

Can be used by all major programming languages
Much Like XML

So why is it better than XML…..?

5

Much Different Than XML

JSON is simpler:
• only supports UTF-8, whereas XML supports a variety of encodings.
• doesn't support schemas, transformations.
• doesn't support namespaces
• method of "escaping" data is much simpler.

JSON is faster
• more terse (less verbose). About 70% of XML's size on average
• simpler means faster to parse
• dead simple to use in JavaScript

6

JSON Has Mostly Replaced XML

Have you noticed that people are rarely discussing XML anymore?
• Google, Facebook, Twitter, IBM Watson focus on JSON
• JSON has become the most popular for REST APIs
• JSON has become the de-facto standard for Internet of Things (IoT)
• XML is still used, but mainly in pre-existing applications. Rarely in new projects.

Chart: Popularity in StackOverflow
discussions. Retrieved Nov 2018.

7

JSON Evolved from JavaScript

Originally JSON was the language used to describe "initializers" for JavaScript
objects.

• Used to set the initial values of JavaScript Objects (data structures), and arrays.
Even for arrays nested in data structures or vice-versa.

• Conceptually similar to "CTDATA" in RPG, except supports nested data as well.

• Unlike JavaScript, however, JSON does not support "methods" (executable
routines in the object) so it's objects are equivalent to RPG data structures.

var DaysOfWeek = ["Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"];

8

JSON Syntax Summary

Arrays start/end with square brackets
["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]

Objects (data structures in RPG) start/end with curly braces { x, x, x, x }
{ "first": "Scott", "last": "Klement", "sex": "male" }

Strings are in double-quotes. Quotes and control characters are escaped
with backslashes. Numbers and true/false are not quoted.

{ "name": "Henry \"Hank\" Aaron", "home_runs": 755, "retired": true }

Names are separated from values with a colon (as above)

Successive elements (array elements or fields in an object) are separated
by commas. (as above)

Data can be nested (arrays inside objects and/or objects inside arrays).

9

JSON and XML to Represent a DS

[
{
"custno": 1000,
"name": "ACME, Inc"

},
{
"custno": 2000,
"name": "Industrial Supply Limited"

}
]

<list>
<cust>
<custno>1000</custno>
<name>Acme, Inc</name>

</cust>
<cust>
<custno>2000</custno>
<name>Industrial Supply Limited</name>

</cust>
</list>

D list ds qualified
D dim(2)
D custno 4p 0
D name 25a

For example, this is an
array of a data

structure in RPG.

This is how the same
array might be

represented (with data
inside) in a JSON

document.

And it’s approximately
the same as this XML

document.

10

Without Adding Spacing for Humans

[{"custno":1000,"name":"ACME, Inc"},{"custno":2000,
"name":"Industrial Supply Limited"}]

<list><cust><custno>1000</custno><name>ACME, Inc</n
ame></cust><cust><custno>2000</custno><name>Industr
ial Supply Limited</name></cust></list>

88 bytes

142 bytes

In this simple "textbook" example, that's a 35% size reduction.

50 bytes doesn't matter, but sometimes these documents can be
megabytes long – so a 35% reduction can be important.

…and programs process JSON faster, too!

11

The YAJL Open Source Tool

YAJL = Yet Another JSON Library
• Created by Lloyd Hilaiel (who works for Mozilla)
• completely Open Source (very permissive ISC license)
• Extremely fast. (Fastest one we benchmarked)
• Written in C.
• Bindings available for Ruby, Python, Perl, Lua, Node.js and others

Ported to IBM i (ILE C) by Scott Klement & David Russo.
• Available at http://www.scottklement.com/yajl
• IBM i 6.1 or higher (7.2 for DATA-INTO)
• Works entirely in UTF-8 Unicode

YAJLR4 = Scott's ILE RPG language bindings
• Simplifies calling YAJL from ILE RPG
• Replaces C macros with RPG subprocedures
• Handles UTF-8/EBCDIC translation for you

12

YAJL Provides

YAJL provides sets of routines for:

• Generating JSON data
• Parsing JSON data in an event-driven (SAX-like) manner
• Parsing JSON in a tree (DOM-like) manner

I have found the tree-style routines to be easier to work with, so will use
them in my examples.

Scott's RPG adapter additionally provides
• YAJLINTO – a DATA-INTO interface for reading JSON
• YAJLDTAGEN – a DATA-GEN generator for creating JSON

DATA-INTO requires IBM i 7.2+ w/PTFs (7.4+ without PTFs)
DATA-GEN will be released for IBM I 7.3+ in November 2019

13

Example of Writing JSON

For an example, an RPG program that lists invoices in a date range in
JSON format, like this:

{
"success": true,
"errmsg": "",
"list": [

{
"invoice": "70689",
"date": "03/01/2014",
"name": "SCOTT KLEMENT",
"amount": 14.80,
"weight": 3.5

},
{ another invoice },
{ another invoice },
...etc...

]
}

14

Example of Writing JSON

Or if an error occurs, it'd return an abbreviated document like this:

{
"success": false,
"errmsg": "Error Message Here",
"list": []

}

To keep it simple, we'll just have it write the result to an IFS file.

Though, you can also use this in a web service, if desired (code download
from ScottKlement.com will have an example of this)

15

RPG Writing JSON with YAJL APIs

H DFTACTGRP(*NO) ACTGRP('KLEMENT') OPTION(*SRCSTMT)
H BNDDIR('YAJL') DECEDIT('0.')

/include yajl_h

D row ds qualified
D inv 5a
D date 8s 0
D name 25a
D amount 9p 2
D weight 9p 1

D cust s 4s 0 inz(4997)
D sdate s 8s 0 inz(20100901)
D edate s 8s 0 inz(20100930)
D dateUSA s 10a varying

D success s 1n
D errMsg s 500a varying

Numbers in JSON must

start a digit (not the

decimal point)

The BNDDIR and copy

book are needed to

access YAJL's routines

To keep example simple,

query criteria is hard-

coded.

16

RPG Writing JSON -- Mainline

exec SQL declare C1 cursor for
select aiOrdn, aiIDat, aiSNme, aiDamt, aiLbs
from ARSHIST
where aiCust=:cust
and aiIDat between :sdate and :edate;

exec SQL open C1;
exec SQL fetch next from C1 into :row;

exsr JSON_Start;

dow sqlstt='00000' or %subst(sqlstt:1:2)='01';
exsr JSON_AddRow;
exec SQL fetch next from C1 into :row;

enddo;

exec SQL close C1;

exsr JSON_Finish;
exsr JSON_Save;
*inlr = *on;

Using SQL to get list of

invoices from sales

history file

At the start of the list,

output JSON start

(subroutine)

For each invoice found,

add the 'row' data

structure to JSON

document

At the end of the list, call

subroutines to finish the

JSON data & save it.

17

YAJL Routines Used

To generate the JSON data we'll use the following YAJL procedures:

yajl_genOpen() / yajl_genClose() = Open/Close JSON generator.
The genOpen routine has a parm of *ON or *OFF tells whether JSON is "pretty" or
"compact"

yajl_beginObj() / yajl_endObj() = start or end JSON object (data struct)

yajl_beginArray() / yajl_endArray() = start or end JSON array

yajl_addBool() = add a boolean (true/false) value to JSON

yajl_addChar() = add a character string to JSON

yajl_addNum() = add a numeric value to JSON

yajl_saveBuf() = write JSON document to IFS

18

JSON_Start Routine

begsr JSON_Start;

yajl_genOpen(*ON); // use *ON for easier to read JSON
// *OFF for more compact JSON

yajl_beginObj();
yajl_addBool('success': success);
yajl_addChar('errmsg': errMsg);
yajl_beginArray('list');

endsr;

{
"success": false,
"errmsg": "Error Message Here",
"list": [

yajl_beginObj
yajl_addBool
yajl_addChar

yajl_beginArray

19

JSON_addRow Routine

begsr JSON_addRow;

dateUsa = %char(%date(row.date:*iso) : *usa);

yajl_beginObj();
yajl_addChar('invoice': row.inv);
yajl_addChar('date': dateUsa);
yajl_addChar('name': %trim(row.name));
yajl_addNum('amount': %char(row.amount));
yajl_addNum('weight': %char(row.weight));
yajl_endObj();

endsr;

Each time this runs, it adds a new JSON element to the end of the document.
Since we have not yet called YAJL_endArray(), each object is a new element in the array that

was started in the JSON_start subroutine.

{
"invoice": "XYX",
"date": "12/31/2013",
"name": "John Doe",
"amount": 123.45,
"weight": 100.5

}

20

JSON_Finish & JSON_Save

begsr JSON_Finish;
yajl_endArray();
yajl_endObj();

endsr;

begsr JSON_Save;

yajl_saveBuf('/tmp/example.json': errMsg);
if errMsg <> '';

// handle error
endif;

yajl_genClose();

endsr;

Finish off the array and

the object that began in

JSON_start.

Save result to IFS file

Close JSON generator

(frees up memory)

21

RPG Writing JSON – "Pretty" Output

{
"success": true,
"errmsg": "",
"list": [

{
"invoice": "70689",
"date": "09/01/2010",
"name": "JIM JOHNSON",
"amount": 14.80,
"weight": 3.5

},
{

"invoice": "70695",
"date": "09/01/2010",
"name": "BILL VIERS",
"amount": 9.80,
"weight": 3.2

}
]

}

Result with yajl_genOpen(*ON)
("pretty" JSON data)

Includes line breaks and indenting to make
it easy as possible for humans to read.
This extra formatting isn't needed for

computer programs to read it, however.

22

RPG Writing JSON – "Compact" output

{"success":true,"errmsg":"","list":[{"invoice":"70689","date":"09/01/
2010","name":"JIM JOHNSON","amount":14.80,"weight":3.5},{"invoice":"7
0695","date":"09/01/2010","name":"BILL VIERS","amount":9.80,"weight":
3.2}]}

Result with yajl_genOpen(*OFF)
("compact" JSON data)

No line breaks or indenting. Makes file size
smaller, so it transmits over the network a

little bit faster.
But, is the exact same document.

23

What if I Wanted a Web Service?

Although there isn't time to go into detail about how to code RESTful
web services in this presentation, the gist would be:

• Get input parameters from the URL.
• Create the JSON document in exactly the same way.
• Use YAJL_writeStdout() instead of YAJL_saveBuf()

YAJL_writeStdout() writes the JSON data to standard output with
HTTP headers, as would be needed if writing your own web service
provider to be run through the IBM HTTP Server (powered by Apache.)

For consuming web services, you can use YAJL_copyBuf() or
YAJL_copyBufStr() which returns the JSON data into a buffer (pointer)
or RPG string so that you can pass it to HTTPAPI or another HTTP
tool to send it.

Examples are provided in the sample code on Scott's web site, here:
http://www.scottklement.com/yajl

24

With DATA-GEN (Instead of APIs)

dcl-ds invData qualified;

success ind;

errmsg varchar(500);

num_list int(10);

dcl-ds list dim(999);

invoice char(5);

date char(10);

name char(25);

amount packed(9: 2);

weight packed(9: 1);

end-ds;

end-ds;

{

"success": true,

"errmsg": "{string}",

"list": [{

"invoice": "{string}",

"date": "{string}",

"name": "{string}",

"amount": {number},

"weight": {number}

}]

}

File = '/tmp/example.json';

DATA-GEN invData %DATA(File: 'doc=file output=clear countprefix=num_')

%GEN('YAJLDTAGEN');

25

Reading JSON Data With DATA-INTO

DATA-INTO is an RPG opcode that was added to IBM i 7.2 and newer
releases.

The following link describes the PTFs needed for DATA-INTO support
on 7.2 and 7.3 releases:
http://ibm.biz/data-into-rpg-opcode-ptfs

YAJL supports DATA-INTO as of the April 2018. (But, get the latest
copy with the latest enhancements!)

DATA-INTO is supported with a program named YAJLINTO that works
with the RPG %PARSER function.

26

What is DATA-INTO?

• RPG opcode that maps data into an RPG data structure

• Almost exactly the same as XML-INTO, but for other types of data

• Works with a 3rd party external parser (YAJLINTO in this case) that

interprets the document.

• With the right parser, should be able to read just about any type of

document. YAJLINTO is designed for JSON documents

• Fields are mapped by their name

• RPG field names must match the JSON field names to work

• Various options are provided, but I cannot cover them all here. See

the ILE RPG Reference for details.

27

DATA-INTO Syntax

The DATA-INTO opcode syntax is:

DATA-INTO result %DATA(document[:options])
%PARSER(parser[:options]);

%DATA options = optional parameter containing options passed to
RPG to control the reading of the XML document, or how it is
mapped into variables

%PARSER options = optional parameter containing options passed to
the parser program. The syntax will vary depending on the
parser program.

%HANDLER = like XML-INTO, the DATA-INTO opcoe supports a
handler. This is an advanced topic I will not cover today.

result = RPG variable (data structure) that data will be loaded into

document = the XML document, or IFS path to the XML document.

28

Data Structure Must Match

The trickiest part is that the DS must match the JSON document

dcl-ds result qualified; // {

success ind; // "success": true,

errmsg varchar(500); // "errmsg": "Error message",

num_list int(10);

dcl-ds list dim(999); // "list": [{

invoice char(5); // "invoice": "xxxxx",

date char(10); // "date": "xx/xx/xxxx",

name char(25); // "name": "xxxxxxxxx"

amount packed(9: 2); // "amount": "xx.xx",

weight packed(9: 1); // "weight": "xxx.x",

end-ds; // }]

end-ds; // }

field names must match, objects must match a data structure, arrays must
match an array.

29

YAJLINTO Parser

Example of DATA-INTO with YAJLINTO as the Parser:

DATA-INTO result %DATA('/tmp/example.json'

: 'doc=file case=any countprefix=num_')

%PARSER('YAJLINTO');

result – the name of RPG data structure that I want to load the JSON
into. You can name it whatever you like on your DCL-DS.

/tmp/example.json - IFS path to the JSON document we generated

doc=file – tells RPG to read the document from a file (vs. a variable)

case=any – tells RPG that the upper/lower case of variable names
does not have to match the document

countprefix=num_ – any variables in the DS that start with "num_"
should receive counts of matching fields. For example,
"num_list" would give the number elements in the "list" array.

30

YAJLINTO Example (1 of 2)

**free

ctl-opt DFTACTGRP(*NO) OPTION(*SRCSTMT) BNDDIR('YAJL');

dcl-f QSYSPRT printer(132);

/include yajl_h

dcl-ds result qualified;

success ind;

errmsg varchar(500);

num_list int(10);

dcl-ds list dim(999);

invoice char(5);

date char(10);

name char(25);

amount packed(9: 2);

weight packed(9: 1);

end-ds;

end-ds;

31

YAJLINTO Example (2 of 2)

dcl-ds printme len(132) end-ds;

dcl-s i int(10);

dcl-s dateISO date(*ISO);

data-into result %DATA('/tmp/example.json'

: 'doc=file case=any countprefix=num_')

%PARSER('YAJLINTO');

for i = 1 to result.num_list;

dateISO = %date(result.list(i).date:*USA);

printme = result.list(i).invoice + ' '

+ %char(dateISO:*ISO) + ' '

+ result.list(i).name + ' '

+ %editc(result.list(i).amount:'L') + ' '

+ %editc(result.list(i).weight:'L');

write QSYSPRT printme;

endfor;

*inlr = *on;

32

YAJLINTO Output

70689 2010-09-01 JIM JOHNSON 14.80 3.5
70695 2010-09-01 BILL VIERS 9.80 3.2
70700 2010-09-01 JOSE MENDOZA 6.00 3.0
70703 2010-09-01 RICHARD KERBEL 10.00 5.0
70715 2010-09-01 JACKIE OLSON 23.80 10.0
70736 2010-09-01 LISA XIONG 24.00 7.0
70748 2010-09-01 JOHN HANSON 11.80 5.0
70806 2010-09-01 JOHN ESSLINGER 7.50 5.0
70809 2010-09-01 LORI SKUZENSKI 20.00 1.0
70826 2010-09-02 KURT KADOW 11.25 7.0
70926 2010-09-02 PENNY STRAW 25.00 5.0
70979 2010-09-02 WOLSKI STEVE 12.75 .0
71021 2010-09-02 KENNETH HALE 21.25 5.9
71062 2010-09-02 ALEX AGULIERA 10.00 2.0
71081 2010-09-03 JIM JOHNSON 41.50 13.5
71270 2010-09-03 DAVE DRESEN 11.90 3.5

The output of the program would look as follows (goes to the spool, I
didn't take the time to add headings, etc)

33

Data-Into from a Web Service

If you need to read JSON from a web service, the JSON may be provided to
you in two ways:
• some tools provide JSON as a string (usually parameter) to your program
• some tools (such as the IBM HTTP server (powered by Apache)) send the

data via “standard input”
To read data sent in a character string, use doc=string (just as you would with
XML-INTO)

data-into result %DATA(myJsonString
: 'doc=string case=convert countprefix=num_')

%PARSER('YAJLINTO');

Since September 2018, YAJLINTO supports direct reading from standard input by
passing the special value *STDIN. This makes it easy to get input via Apache.

data-into result %DATA('*STDIN'

: 'case=convert countprefix=num_')

%PARSER('YAJLINTO');

34

Using YAJL's Tree Method

As mentioned earlier, YAJL provides two ways of reading JSON data:
• event-based (like SAX in XML) APIs
• tree-based (like DOM in XML) APIs

This talk will discuss the tree-based method, since I have found it
much easier to use.

Advantages over DATA-INTO:
• Works on older releases (6.1+)
• has more capabilities (pointers, generate, generate from tree nodes)
• the RPG document doesn't have to match the JSON document

Disadvantages:
• tricker to learn/code
• uses more memory

35

Populating the YAJL tree

To load JSON data from IFS into the tree parser, call
yajl_stmf_load_tree(), as follows:

docNode = yajl_stmf_load_tree('/tmp/example.json' : errMsg);

The return value is a YAJL 'node' that represents the outermost
element of the JSON document. (the tree's "trunk")

A 'node' represents data at one level of the document, and can be
used to retrieve 'child nodes' that are within the current 'node'.

(To understand better, see the diagram on the next slide.)

There is also yajl_buf_load_tree() and yajl_string_load_tree() if you
prefer to load from a buffer or RPG variable.

36

Diagram of a JSON Tree

do
cN
od
e

success
(true/false)

errmsg
(char string)

list (array)

array index 1
(object)

invno (char string)

date (char string)

name (char string)

amount (number)

weight (number)

array index 2
(object)

invno (char string)

date (char string)

name (char string)

amount (number)

weight (number)

When YAJL loads the JSON

data into the tree, it gives

me the document node

(docNode)

Given any node, I can

retrieve it's "children".

So with docNode, I can get

the nodes for the 'success',

'errmsg' and 'list' elements.

and with the node

for 'list', I can get

the array

elements, etc

37

Retrieving A "Child Node"

// { "success": true }

succNode = yajl_object_find(docNode : 'success');

if yajl_is_true(succNode);
// success!

else;
// failure

endif;

yajl_object_find() will get a child node by field name.

yajl_is_true() returns whether a true/false value is true.

yajl_is_false() returns whether a true/false value is false.

38

Get a String Value From a Node

// { "success": false, "errmsg": "invalid start date" }

succNode = yajl_object_find(docNode : 'success');

if yajl_is_false(succNode);
errMsgNode = yajl_object_find(docNode: 'errmsg');
msg = yajl_get_string(errMsgNode);
// msg now contains "invalid start date"

endif;

yajl_get_string() = returns a string value from a node

For numeric values, there's also yajl_get_number()

39

Processing an Array

// { "list": [invoice1, invoice2, invoice 3] }

list = yajl_object_find(docNode : 'list');

i = 0;
dow YAJL_ARRAY_LOOP(list: i: node);

// code here is repeated for each array element.
// each time through, node and i are updated
// to point to reflect the current array element.

enddo;

yajl_array_loop() = loops through all elements in a JSON array

yajl_array_elem() (not demonstrated here) can be used if you prefer to
get each element by it's array index number.

40

Processing an Object (DS)

// { "invoice": 123, "name": "Scott Klement", "amount": 100.00 }

i = 0;
dow YAJL_OBJECT_LOOP(docNode: i: key: val);

// code here is repeated for each field in the object
// each time through, key, val and i are updated
// to point to reflect the current field

enddo;

yajl_object_loop() = loops through all sub-fields in an object, and
returns the field name ("key"), child node ("val") and index for each.

This is, equivalent to calling yajl_object_find() separately for each field
name.

41

Freeing Up Resources (When Done)

yajl_tree_free(docNode);

When yajl_stmf_load_tree() ran, all of the JSON details were loaded
into memory. To free up that memory, you must call yajl_tree_free()

You must pass the document node into yajl_tree_free(), so be sure to
save it when you call yajl_xxxx_load_tree().

yajl_tree_free() will free up all of the child nodes as well as the
document node. So be sure that you do not refer to any of the nodes
after calling it.

42

Reading JSON – RPG Example

To put together all of the YAJL tree concepts shown in the preceding
slides, I have provided an RPG example.

• Reads the same JSON file (from IFS) that we created earlier
• Loads the JSON data into an RPG data structure.
• After all is loaded, loops through and prints the data (just to

demonstrate reading)

43

RPG Reading JSON (1 of 6)

H DFTACTGRP(*NO) ACTGRP('KLEMENT') OPTION(*SRCSTMT)
H BNDDIR('YAJL')

/include yajl_h

D list_t ds qualified
D template
D inv 5a
D date 8s 0
D name 25a
D amount 9p 2
D weight 9p 1

D result ds qualified
D success 1n
D errmsg 500a varying
D list likeds(list_t) dim(999)

D i s 10i 0
D j s 10i 0
D dateUSA s 10a
D errMsg s 500a varying inz('')

The 'result' data

structure will be

populated from the

JSON data

44

RPG Reading JSON (2 of 6)

D docNode s like(yajl_val)
D list s like(yajl_val)
D node s like(yajl_val)
D val s like(yajl_val)

D key s 50a varying

Variables that represent JSON nodes are defined as 'yajl_val'

Technically, under the covers, these are pointers to the data
structures that YAJL uses internally.

However, there's no need for the RPG program to be concerned
with how it works, and it's not necessary to do any sort of pointer

logic on these fields. They are just placeholders for the JSON
nodes.

45

RPG Reading JSON (3 of 6)

// load the example.json document into a tree.

docNode = yajl_stmf_load_tree('/tmp/example.json' : errMsg);
if errMsg <> '';
// handle error

endif;

// get the 'success' field into 'result' DS
// result.success is an RPG named indicator, and will be
// *ON if success=true, *OFF if success=false

node = YAJL_object_find(docNode: 'success');
result.success = YAJL_is_true(node);

// get the 'errmsg' field into 'result' DS

node = YAJL_object_find(docNode: 'errmsg');
result.errmsg = YAJL_get_string(node);

46

RPG Reading JSON (4 of 6)

list = YAJL_object_find(docNode: 'list');

i = 0;
dow YAJL_ARRAY_LOOP(list: i: node);

j = 0;
dow YAJL_OBJECT_LOOP(node: j: key: val);

// when 'load_subfield' is run, "key" will contain
// the JSON field name, and "val" will contain
// a YAJL node from which the value can be extracted

exsr load_subfield;

enddo;

enddo;

'node' contains the array
element that represents
an invoice object in the

list.

yajl_object_loop is called
for each array 'node' to

get it's subfields.

47

RPG Reading JSON (5 of 6)

begsr load_subfield;

select;
when key = 'invoice';

result.list(i).inv = yajl_get_string(val);

when key = 'date';
dateUSA = yajl_get_string(val);
result.list(i).date = %dec(%date(dateUSA:*usa):*iso);

when key = 'name';
result.list(i).name = yajl_get_string(val);

when key = 'amount';
result.list(i).amount = yajl_get_number(val);

when key = 'weight';
result.list(i).weight = yajl_get_number(val);

endsl;

endsr;

48

RPG Reading JSON (6 of 6)

D prt ds likeds(list_t)
.
.
for i = 1 to YAJL_ARRAY_SIZE(list);

prt = result.list(i);
except print;

endfor;
.
.

OQSYSPRT E PRINT
O PRT.INV 5
O PRT.DATE 17 ' - - '
O PRT.NAME 44
O PRT.AMOUNT L 56
O PRT.WEIGHT L 67

Just for the sake of having some output, here's a quick & dirty routine
to print the invoice list (with O-specs)

49

RPG Reading JSON -- Output

70689 2010-09-01 JIM JOHNSON 14.80 3.5
70695 2010-09-01 BILL VIERS 9.80 3.2
70700 2010-09-01 JOSE MENDOZA 6.00 3.0
70703 2010-09-01 RICHARD KERBEL 10.00 5.0
70715 2010-09-01 JACKIE OLSON 23.80 10.0
70736 2010-09-01 LISA XIONG 24.00 7.0
70748 2010-09-01 JOHN HANSON 11.80 5.0
70806 2010-09-01 JOHN ESSLINGER 7.50 5.0
70809 2010-09-01 LORI SKUZENSKI 20.00 1.0
70826 2010-09-02 KURT KADOW 11.25 7.0
70926 2010-09-02 PENNY STRAW 25.00 5.0
70979 2010-09-02 WOLSKI STEVE 12.75 .0
71021 2010-09-02 KENNETH HALE 21.25 5.9
71062 2010-09-02 ALEX AGULIERA 10.00 2.0
71081 2010-09-03 JIM JOHNSON 41.50 13.5
71270 2010-09-03 DAVE DRESEN 11.90 3.5

The output of the program would look as follows:

50

What About Web Service Input?

Although there isn't time to go into detail about how to code RESTful
web services in this presentation, the gist would be:

• Get input parameters from the URL.
• Load the input document with YAJL_stdin_load_tree()

YAJL_stdin_load_tree() reads JSON data from standard input, and
returns the document node. If you are writing a web service provider
called from Apache, you can use it in place of YAJL_stmf_load_tree()
to get the data from Apache instead of from a file.

There is also a routine called YAJL_buf_load_tree() for loading JSON
data from a buffer or variable instead of a file.

Examples are provided in the sample code on Scott's web site, here:
http://www.scottklement.com/yajl

51

This Presentation

You can download YAJL and the sample code presented in
this session from:

http://www.scottklement.com/yajl

You can download a PDF copy of this presentation from:
http://www.scottklement.com/presentations/

Thank you!

