
XML From RPG Using Free Tools

Presented by

Scott Klement
http://www.scottklement.com

© 2005-2009, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’ t.”

Session 500125
44CB

2

Why do I care about XML?

• It is a standard for exchanging data between trading
partners

• It is a standard for exchanging data between computer
applications

• It can be processed by a program, but is readable to a
human, which makes it versatile.

• It is one of the main technologies required for using
Web Services

• Some newer APIs are using XML for input and output

XML is important to businesses because:

3

How to do it in RPG?

While reviewing the syntax of XML in the next
several slides, think to yourself…

• "Could I write routines that output data in this
format?"

• " If I had to write a program to read and process a
file with this layout, how would I go about it?"

• "Could I make my read and process routines
generic enough to be used for any XML document?"

4

XML Syntax Review (1 of 3)

• XML tags start with <TagName> and end with </TagName>

• They can have attributes <TagName attribute="value">

• Tags can be nested in other tags <tag1><tag2></tag2></tag1>

<Cust Rec cust no=" 1234" >

<Name>Fr ed' s Pi g Spr i nkl er s, I nc. </ Name>

<Addr ess>
<St r eet >123 Mai n St . </ St r eet >
<Ci t y>Cl evel and</ Ci t y>
<St at e>OH</ St at e>
<Zi p>44145</ Zi p>

</ Addr ess>

</ Cust Rec>

5

XML Syntax Review (2 of 3)

<Cust Rec cust no=" 4321" >
<Name>

Bob' s Shoe Empor i um, Lt d.
</ Name>
<Addr ess>

<St r eet >
321 Sesame St .

</ St r eet >
<Ci t y>New Yor k</ Ci t y><St at e>NY</ St at e> <Zi p>12345</ Zi p>

</ Addr ess></ Cust Rec>
<Cust Rec cust no=" 5432" ><Name>Bi g Al ' s

For mul a</ Name><Addr ess><St r eet >3067 W Thor ncr est Dr </ St r eet >
.
.

</ Cust Fi l e>

Line breaks are not required, and can appear anywhere within
the data, or can be omitted entirely. It's not always "one tag per
line" .

6

XML Syntax Review (3 of 3)

<Ar t i c l e>
<aut hor name=" Scot t Kl ement " / >
<t i t l e>TCP/ I P and Socket s</ t i t l e>
<chapt er i d=" i nt r o" >

<t i t l e>Chapt er 1 - I nt r oduct i on</ t i t l e>
<sect 1>

<t i t l e>TCP/ I P Concept s and Ter mi nol ogy</ t i t l e>
<par a>Thi s sect i on i s an i nt r oduct i on t o TCP/ I P

pr ogr ammi ng usi ng a <I >Socket s API </ I >. (Socket s can
al so be used t o wor k wi t h ot her net wor k pr ot ocol s,

.

.
</ par a>

</ sect 1>
</ chapt er >

</ Ar t i c l e>

• Tags can be intermixed with data. That data can span many lines.

• If a tag does not have a corresponding closing tag, it should be formatted as
<TagName/>

• Tag names may not be unique throughout a document (for example, <title>)

7

What have you decided?

Can you write a program to output an XML
document?

Output isn't very difficult because it doesn't usually change, and you
control the format.

Can you write a program to read and process
one?

You probably could, but since you don't control how it's formatted when it's
sent to you, it'd be difficult to ensure that the program would always work
for every file.

Can it be made generic enough to be re-used
for any XML document?

It's probably possible, but it would be a lot of work! Why reinvent the wheel
when there are free tools available?

8

Writing XML w/Standard RPG

It's not usually that difficult to write XML output, since you usually have a
specific format in mind. Since you control the format, rather than a 3rd party,
you don't have to be ready to cope with any possible situation.

One way would be to write it to a flat file using standard RPG operations:

FXMLFI LE O F 500 DI SK
D xml s 512A

/ f r ee
xml = ' <?xml ver si on=" 1. 0" >' ;
except xml dat a; ;
xml = ' <Cust Fi l e>" ;
except xml dat a;
xml = ' <Cust Rec>' ;
except xml dat a;

/ end- f r ee

OXMLFI LE E xml dat a
O xml 512

9

Writing XML w/IFS APIs

Output using RPG operations can be awkward. It's a somewhat easier using the
IFS APIs because you can write many lines of XML and output them all at once.

/ f r ee
f d = open(' / home/ scot t k/ xml / t est . xml '

: O_WRONLY+O_CREAT+O_TRUNC+O_CCSI D
: M_RDWR
: 819) ;

xml =
' <?xml ver si on=" 1. 0" >'

+ ' <Cust Fi l e>'
+ ' <Cust Rec cust no=" ' + %t r i m(Cust No) + ' " >'
+ ' <Name>' + %t r i m(Name) + ' </ Name>'
+ ' <Addr ess>'

. . . And so f or t h . . .

cal l p wr i t e(f d: %addr (xml) +2: %l en(xml)) ;
cal l p cl ose(f d) ;

/ end- f r ee

10

Writing XML w/Free Tools

Even with the IFS APIs, it can be awkward. You have to get all of the quotes in
the right place, and maintenance can be awkward. One of the easiest ways is to
use a free tool.

CGIDEV2 is a free tool from IBM. It's completely written in RPG and it's aimed at
RPG programmers who want to output HTML code. Since XML is very similar to
HTML, it works nicely for XML as well.

CGIDEV2 lets you create templates where you put the XML code. These
templates can be written by you or by a colleague who is well versed in XML
code and not so well versed in RPG code.

The templates consist of "sections" , which are groups of XML code that you
write out at once, and "variables" , which are strings that are replaced with
variable data from your RPG program.

11

Sample CGIDEV2 Template

/ $Fi l eHeadi ng
<?xml ver si on=" 1. 0" ?>
<Cust Fi l e>

/ $Cust Rec
<Cust Rec cust no=" / %Cust no%/ " >

<name>/ %Name%/ </ name>
<Addr ess>

<St r eet >/ %St r eet %/ </ St r eet >
<Ci t y>/ %Ci t y%/ <Ci t y>
<St at e>/ %St at e%/ </ St at e>
<Zi p>/ %Zi pCode%/ </ Zi p>

</ Addr ess>
</ Cust Rec>

/ $Fi l eFoot er
</ Cust Fi l e>

Sections start with /$ (for example /$FileHeading)

Substitution variables are formatted: /%VarName%/

12

Code for use with CGIDEV2

get Ht ml I f sMul t (' / myTempl at es/ Cust Xml . t mpl ') ;

wr t sect i on(' Fi l eHeadi ng') ;

set l l * st ar t cust mas;
r ead cust mas;

dow not %eof (cust mas) ;
updHt ml Var (' Cust no' : %char (Cust No)) ;
updHt ml Var (' Name' : Name) ;
updHt ml Var (' St r eet ' : Addr) ;
updHt ml Var (' Ci t y ' : Ci t y) ;
updHt ml Var (' St at e' : St at e) ;
updHt ml Var (' Zi pCode' : %edi t w(Zi pCode: ' - ')) ;
wr t sect i on(' Cust Rec') ;
r ead cust mas;

enddo;

wr t sect i on(' Fi l eFoot er ') ;

Wr t Ht ml ToSt mf (' / expor t / cust mas. xml ' : 819) ;

The key to writing XML with CGIDEV2 is to use the WrtHtmlToStmf() procedure
to write the results. (Don't use wr t sect i on(' * f i ni '))

13

More CGIDEV2 notes

CGIDEV2 doesn't understand numbers. You'll need to use the %EDI TC, %EDI TW
or %CHAR BIFs to convert them to strings before writing them to the file. (Easy to
do!)

updHt ml Var () loads the variable values into CGIDEV2's memory.

wr t sect i on() merges the variable values into the XML code and then writes it
to an output buffer in memory.

Wr t Ht ml ToSt mf () writes the output buffer to a stream file on disk.

Because CGIDEV2 works with everything in memory, it's not suitable for very
large documents. The IFS API example does not have this problem, however.

There is no validation being done when the document is written. That's not
usually a problem because the document layout doesn't change. Once you've
completed the testing phase of your project, the document should be correct, so
validating it each time may not be necessary.

14

Parsing XML

• Roll your own (good luck!)

• Buy IBM’s XML Toolkit (DOM & SAX) (5733-XT1)

• Use the SAX parser built in to COBOL (V5R3) or
RPG (V5R4)

• Use the free Java ones

• Call the Java methods directly from RPG

• Purchase a 3rd party tool.

• Use the open source Expat tool

What are your options for parsing XML?

15

What is Expat?

Expat is a service program that was written in C by James Clark
who was the technical lead on the XML Working group of W3C
when the XML specification was produced.

Expat is very fast, very reliable and robust.

It’s the underlying XML parser for the Mozilla project,
OpenOffice, Perl’s XML::Parser, as well as Scott’s own HTTPAPI
project.

It’s a stream-oriented parser, similar to SAX. You feed it an XML
document, as a stream, and it will parse it to determine “ events” .

Scott has put together a package that you can download for free
from his web site. It contains the Expat service program
(precompiled), the source code, a CL program that compiles it,
RPG prototypes in a /COPY member, and some sample RPG
programs.

http://www.scottklement.com/expat/

16

Expat Concepts

• Your program is responsible for reading the file, not Expat!
• You read the file, and feed the data (bit by bit) into Expat's

parser.

Tip: This means you can parse XML from any input source!

When you use Expat:

Events:
• Expat reads through the XML as your program feeds it in.
• It scans the data for "events" .

�Start of XML element <MyTag>
�End of XML element </MyTag>
�Character data

• Each time an event is found, it calls one of your
subprocedures.

• You write these subprocedures, and they process the events as
required for your business goals.

17

Expat Scans For Events

Expat looks for start/end XML tags, these constitute "events". Here's an
example of the events:

<Cust Fi l e>
<Cust Rec cust no=" 1234" >

<name>Fr ed' s Pi g Spr i nkl er s, I nc. </ name>
<Addr ess>

<St r eet >123 Mai n St . </ St r eet >
<Ci t y>Cl evel and</ Ci t y>
<St at e>OH</ St at e>
<Zi p>44145</ Zi p>

</ Addr ess>
</ Cust Rec>
<Cust Rec>
. .
</ Cust Rec>
. . Mor e Cust Recs Her e . .

</ Cust Fi l e>

Start events in
red

End events in
blue

Character data
events in black

18

Expat Overview

• Open the file that you want to parse
• Create a work space for the XML Parser
• Register event handlers
• Feed the data to the XML parser (in a loop)
• Free up the work space

Using Expat Requires These Steps:

Event Handler:
• Subprocedures that you write
• Called by Expat when certain events occur

� Start of XML element <MyTag>
� End of XML element </MyTag>
� Character data

• Data is passed in UCS2 Unicode.
• Must keep track of position in document
• Must decide what to do with the data that’s read

19

Example of Parsing Cust XML
The goal of this example is to parse the XML that we just wrote using
CGIDEV2 and use it to print some address labels.

The XML data will be parsed and loaded into the following array:

D count s 10I 0 i nz(0)

D cust r ec ds qual i f i ed
D di m(100)
D cust no 4P 0
D name 30A
D st r eet 30A
D c i t y 15A
D st at e 2A
D z i p 9P 0 i nz(0)

"Count" will contain the number of customer records found.

"custrec" will contain all of the addresses loaded from the XML document.

20

Opening the File
This example uses the IFS APIs, but you could also read it from a “normal”
file if you like, or a variable, or a parameter... whatever is appropriate for your
business needs.

f d = open(' / home/ kl emscot / cust mas. xml '
: O_RDONLY) ;

i f (f d < 0) ;
/ / open() f ai l ed. Handl e er r or her e.

endi f ;

Since Expat does not support EBCDIC (and EBCDIC would be an unusual
character set for XML, in any case!), you'll want to make sure that the data in
the file is in an ASCII or Unicode character set.

Some cases, it's smart to use O_TEXTDATA is used to convert the data to
Unicode as it's read, that way i5/OS takes care of translating the character
set instead of Expat.

21

More About Encodings
Expat only supports the following encodings:

• ISO-8859-1 ASCII (default)

• UTF-8 subset of Unicode

• UCS2 (UTF-16) subset of Unicode

• US-ASCII

If one of the above encodings was used, Expat can automatically determine
the encoding from the "encoding" attribute of the <?xml> tag. For example:

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>

No matter which encoding was used for the input data, Expat always sends
you the output in UCS2 Unicode.

This helps simplify your event handlers! They only need to know how to
handle UCS2, rather than every possible encoding!

22

Create a Work Space
Expat needs an internal work space to use when processing the document. If
you’re familiar with object-oriented programming, you can think of it as an
“XML Parser Object”. Every document needs it’s own work space.

D p s l i ke(XML_Par ser)
. . .

p = XML_Par ser Cr eat e(XML_ENC_UTF8) ;
-- or --

p = XML_Par ser Cr eat e(* OMI T) ;
i f (p = * NULL) ;

cal l p cl ose(f d) ;
/ / unabl e t o cr eat e wor k space, t el l user !

endi f ;

D XML_Par ser Cr eat e. . .
D PR Ext Pr oc(' XML_Par ser Cr eat e')
D l i ke(XML_Par ser)
D encodi ng * val ue opt i ons(* st r i ng)

At this time, you can also tell Expat how the data is encoded (UTF-8), or
specify *OMIT to let Expat figure it out from the document itself...

23

Register Event Handlers

This is how you tell Expat which subprocedures to call for each event.

/ / Cal l t he " st ar t " subpr ocedur e f or each XML St ar t El ement Event :

XML_Set St ar t El ement Handl er (p : %paddr (st ar t)) ;

/ / Cal l t he " end" subpr ocedur e f or each XML End El ement Event

XML_Set EndEl ement Handl er (p : %paddr (end)) ;

/ / Cal l t he " char dat a" subpr ocedur e f or char act er dat a event s

XML_Set Char act er Dat aHandl er (p : %paddr (char dat a)) ;

Subprocedures (like everything else) are just bytes in memory. You can get
their address in memory with the %paddr () BIF. Expat will call a
subprocedure at the address you provide.

24

Feed the Parser
The data from the XML document must be fed to the XML_Parse() API, one
chunk at a time. The API will scan the data for XML tags and will call the
event handlers as needed. Pass done=1 to indicate that there’s no more
data.

dou (done = 1) ;
l en = r ead(f d: %addr (Buf f) : %si ze(Buf f)) ;

i f (l en < 1) ;
done = 1;

endi f ;

i f (XML_Par se(p: Buf f : l en: done) = XML_STATUS_ERROR) ;
cal l p cl ose(f d) ;
er r or Msg = ' Par se er r or at l i ne '

+ %char (XML_Get Cur r ent Li neNumber (p)) + ' : '
+ %st r (XML_Er r or St r i ng(XML_Get Er r or Code(p))) ;

/ / Her e, you' l l show t he er r or message t o t he
/ / user , or wr i t e t o QSYSOPR, et c. . .

endi f ;

enddo;

This is where you input
the XML data, and it will

call your handlers.

25

Free Up the Work Space

Now that the parsing is done, clean up the objects that were used to do the
parsing:

• Free up the Expat work space

• Close the stream file

/ / Fr ee up Expat wor k space
XML_Par ser Fr ee(p) ;

/ / c l ose st r eam f i l e
cal l p cl ose(f d) ;

26

Tracking Position

<Cust Fi l e>
<Cust Rec cust no=" 1234" >

<name>Fr ed' s Pi g Spr i nkl er s, I nc. </ name>
<Addr ess>

<St r eet >123 Mai n St . </ St r eet >
<Ci t y>Cl evel and

. . . and so on . . .

/CustFile/CustRec

/CustFile

/CustFile/CustRec/name/CustFile/CustRec/name/CustFile/CustRec/Address

/CustFile/CustRec/Address/Street/CustFile/CustRec/Address/Street/CustFile/CustRec/Address/City

The way I keep track of where I am in the document is by implementing a stack. Each
time the start element handler is called, it pushes a new item onto the stack. Each time
the end element handler is called, it pops the top item off of the stack.

27

Adding to a Stack in RPG

D dept h s 10I 0
D st ack s 512A var y i ng di m(32)
D st ackval s 512A var y i ng di m(32)

Implementing the stack in code means:
• Keep track of the current depth
• Maintain a global array that contains the XPath at the given depth
• Maintain a global array that contains the value of the element at the given depth

At the top of my program, in the global D-specs, I have the following:

dept h = dept h + 1;
st ackval (dept h) = ' ' ;

i f (dept h = 1) ;
st ack(dept h) = ' / ' + %char (el emName) ;

el se;
st ack(dept h) = st ack(dept h- 1) + ' / ' + %char (el emName) ;

endi f ;

In the start element handler, I add each new element to the stack:

Tip: The %CHAR() BIF converts the UCS2 data to EBCDIC.

28

Removing from the Stack

dept h = dept h - 1;

I remove each element from the stack when the end element handler is called, simply
by reducing the current depth.

Since the stack is global, I can check it from anywhere in my handlers. Any time I need
to know where I am in the document, I can check the current stack entry as follows:

i f (s t ack(dept h) = ' / Cust Fi l e/ Cust Rec') ;
/ / do somet hi ng t hat shoul d be done f or t he Cust Rec el ement .

endi f ;

29

Start Element Handler (1 of 3)
This handler is called by XML_Parse() for the start elements.

A start element event handler must accept parameters in the following
format, but the subprocedure name can have any name you like:

D st ar t PR
D user dat a * val ue
D el em 16383C opt i ons(* var si ze)
D at t r * di m(32767)
D opt i ons(* var si ze)

Userdata = It’s possible to supply data to Expat that it will pass back to all of
your handlers. I did not use it in this example, so it will be *NULL.

Elem = The element name in UCS2 Unicode (RPG data type C). The
length can vary -- you'll know the end of the data by searching for a
"null" (a hex u'0000' character)

Attr = Array of UCS2 strings, all are null-terminated. They represent the
XML attributes specified on the start tag. A null pointer signals the
end of the attribute list.

30

Start Element Handler (2 of 3)

P st ar t B
D st ar t PI
D user dat a * val ue
D el em 16383C opt i ons(* var s i ze)
D at t r * di m(32767)
D opt i ons(* var s i ze)

D el emName s 500C var y i ng

/ f r ee
/ / Copy ever yt hi ng bef or e t he u' 0000' (nul l t er mi nat or)
/ / t o t he el emName var i abl e:
l en = %scan(u' 0000' : el em) - 1;
el emName = %subst (el em: 1: l en) ;

Usually, the Start Element Handler has two important goals:
• To keep track of the position in the document (create an Xpath)
• To parse the attributes

Before it can do those things, it needs to find the end of the string by searching for the
u'0000' character. I like to use %subst () to move it to a VARYING field for future use.

31

Start Element Handler (3 of 3)

/ / -
/ / Mai nt ai n st ack
/ / -
dept h = dept h + 1;
st ackval (dept h) = ' ' ;

i f (dept h = 1) ;
st ack(dept h) = ' / ' + %char (el emName) ;

el se;
st ack(dept h) = st ack(dept h- 1) + ' / ' + %char (el emName) ;

endi f ;

/ / -
/ / I f t hi s i s t he st ar t of a new cust omer r ecor d,
/ / move t o t he next el ement of t he cust omer r ecor d ar r ay
/ / -
i f (s t ack(dept h) = ' / Cust Fi l e/ Cust Rec') ;

count = count + 1;
endi f ;

After translating to EBCDIC, the start element handler adds the new element to the
stack (as discussed earlier) and then checks to see if this is a new CustRec element. If
so, it'll start a new array element.

32

Parsing Attributes (1 of 2)
Attributes are passed to the start element handler as an array of pointers. The pointers
point to C-style null-terminated strings.

The elements of the array are in the UCS2 encoding.

The array alternates between the attribute name and it's value.

The first one is an attribute name. The next is it's value. Then comes the next attribute
name, and so on, until one of the pointers is *NULL. A *NULL denotes the end of the
list.

33

Parsing Attributes (2 of 2)

D at t r Dat a s 16383C based(p_At t r)
D at t r Name s 100C var y i ng
D at t r Val s 200C var y i ng

x = 1;
dow at t r (x) <> * NULL;

p_At t r = at t r (x) ;
l en = %scan(U' 0000' : at t r Dat a) - 1;
at t r Name = %subst (at t r dat a: 1: l en) ;

p_At t r = at t r (x+1) ;
l en = %scan(U' 0000' : at t r Dat a) - 1;
at t r Val = %subst (at t r Dat a: 1: l en) ;

i f (s t ack(dept h) = ' / Cust Fi l e/ Cust Rec')
and at t r Name = %ucs2(' cust no') ;

cust r ec(count) . cust no = %dec(%char (At t r Val) : 4: 0) ;
endi f ;

x = x + 2;
enddo;

<Cust Rec cust no=" 1234" >

34

Character Data Handler (1 of 2)

D char dat a PR
D User Dat a * val ue
D s t r i ng 16383C const opt i ons(* var s i ze)
D l en 10I 0 val ue

The character data handler will be called for any data that's not part of an XML tag (the
black data).

Your character data handler must accept the following parameters:

UserData = same as the one of the start and end element handlers.

String = The character data in UCS2 Unicode. Unlike previous examples, u'0000' does
not signal the end, instead you must check the len parameter.

Len = length of the string parameter, in characters (not bytes!)

35

Character Data Handler (2 of 2)

P char dat a B
D char dat a PI
D User Dat a * val ue
D s t r i ng 16383C const opt i ons(* var s i ze)
D l en 10I 0 val ue

/ f r ee
s t ackval (dept h) = st ackval (dept h)

+ %char (%subst (st r i ng: 1: l en)) ;
/ end- f r ee

P E

Tip: The length of the data will never be longer than the buffer you used when you fed
the data into Expat. Use a 16383 or smaller buffer to ensure that the len
parameter isn't too long for the procedure to handle.

In this example, the data is only saved to the stack. The end element handler map it
into the data structure array, that way it's clear that the entire element has been
received.

36

End Element Handler (1 of 2)

D end PR
D User Dat a * val ue
D el em 16383C const opt i ons(* var s i ze)

• Save the "stackval" value to the array of customer addresses, depending on the
current position in the document.

• Pop the top element from the stack.

The end element handler always has the following parameters:

UserData = Same as the one for the start element handler.

Elem = element name in UCS2 Uncode. It's terminated by u'0000' like the element
name from the start element handler. (We don't need this, though, since the
element name is on our stack!)

When the end element handler is called, you know that there's no more data for this
element. Therefore, you do the following in the end element handler:

37

End Element Handler (2 of 2)

sel ect ;
when st ack(dept h) = ' / Cust Fi l e/ Cust Rec/ name' ;

cust r ec(count) . Name = st ackval (dept h) ;
when st ack(dept h) = ' / Cust Fi l e/ Cust Rec/ Addr ess/ St r eet ' ;

cust r ec(count) . St r eet = st ackval (dept h) ;
when st ack(dept h) = ' / Cust Fi l e/ Cust Rec/ Addr ess/ Ci t y ' ;

cust r ec(count) . Ci t y = st ackval (dept h) ;
when st ack(dept h) = ' / Cust Fi l e/ Cust Rec/ Addr ess/ St at e' ;

cust r ec(count) . St at e = st ackval (dept h) ;
when st ack(dept h) = ' / Cust Fi l e/ Cust Rec/ Addr ess/ Zi p' ;

i f %scan(' - ' : s t ackval (dept h)) <> 0;
st ackval (dept h) = %r epl ace(' '

: s t ackval (dept h)
: %scan(' - ' : s t ackval (dept h))
: 1) ;

endi f ;
cust r ec(count) . Zi p = %dec(st ackval (dept h) : 9 : 0) ;

endsl ;

dept h = dept h - 1;

Map the elements into their places in the array.

38

Conclusion of Program

D pr ds l i keds(Cust Rec)
.
.

f or x = 1 t o Count ;
pr = Cust Rec(x) ;
except Label ;

endf or ;
.
.

OQSYSPRT E Label 1 3
O pr . Name
O E Label 1
O pr . St r eet
O E Label 1
O pr . Ci t y
O pr . St at e +1
O pr . Zi p +2 ' - '

Since the Element Handlers are all called during the call to XML_Parse(), the parsing
is complete once the work space has been cleared.

Now you can use the data in the CustRec array. In this case, it’s used to print some
address labels:

39

Built-In XML Support

COBOL XML Support
� Starting in V5R3, COBOL on the System i has built-in support for

XML, similar to what Expat provides.
� Like Expat, it's a non-validating SAX-style parser.
� In V5R4, they added support for writing XML as well. (but, it very

limited.)

RPG XML Support
� In V5R4, support similar to that of COBOL is included with ILE RPG.
� XML-INTO op-code loads XML from a string or file into variables.
� XML-SAX op-code calls a callback procedure much like Expat does.

The XML-INTO op-code makes things very easy, but doesn't work with
name spaces, and requires a data structure to match the XML layout.

XML-SAX is very similar to the Expat solution, maybe a bit more complex.

40

More Information – CGIDEV2

CGIDEV2 is supported by IBM. Thedownload page for CGIDEV2 is
http://www-03.ibm.com/systems/services/labservices/library.html

Tutorials on Web programming with CGIDEV2 are available at:
http://www.easy400.net

Scott has written several articles about CGIDEV2 for his newsletter:

• CGIDEV2 for XML
http://www.systeminetwork.com/article.cfm?id=51276

• Web programming in RPG parts 1,2,3
http://www.systeminetwork.com/article.cfm?id=51135
http://www.systeminetwork.com/article.cfm?id=51145
http://www.systeminetwork.com/article.cfm?id=51209

• CGIDEV2 for E-mail
http://www.systeminetwork.com/article.cfm?id=51238

41

More Information – Expat

Download Expat and sample code (including the CustList example)
from Scott’s Web site:

http://www.scottklement.com/expat/

XML Resources
• Scott has written more about Expat in his newsletter.
• Latest "getting started" article:

http://www.systeminetwork.com/article.cfm?id=53061
• Name space support:

http://systeminetwork.com/article/xml-namespaces-and-expat
• Older Articles (from when Expat was returning UTF-8):

http://systeminetwork.com/article/club-tech-iseries-programming-tips-newsletter-23
http://systeminetwork.com/article/club-tech-iseries-programming-tips-newsletter-25
http://systeminetwork.com/article/club-tech-iseries-programming-tips-newsletter-26
http://www.systeminetwork.com/article.cfm?id=50719

Expat’s main site (no System i or RPG information):
http://www.libexpat.org

42

More Info – RPG XML Opcodes

I have written the following articles about RPG's opcodes:

XML-INTO:
http://systeminetwork.com/article/real-world-example-xml
http://systeminetwork.com/article/xml-maximum-length
http://systeminetwork.com/article/xml-read-xml-data-larger-65535
http://systeminetwork.com/article/xml-output-array-larger-16-mb

PTFs for IBM 6.1, offer Extended Support in XML-INTO:
by Barbara Morris of IBM
http://www-949.ibm.com/software/rational/cafe/docs/DOC-2975

XML-SAX:
http://www.scottklement.com/rpg/xml-sax

43

This Presentation

You can download a PDF copy of this presentation from:

http://www.scottklement.com/presentations/

Thank you!

